Fluid flow in miniature devices is often characterized by a boundary “slip” at the wall, as opposed to the classical paradigm of a “no-slip” boundary condition. While the traditional mathematical description of fluid flow as expressed by the differential forms of mass and momentum conservation equations may still suffice in explaining the resulting flow physics, one inevitable challenge against a correct quantitative depiction of the flow velocities from such considerations remains in ascertaining the correct slip velocity at the wall in accordance with the complex and convoluted interplay of exclusive interfacial phenomena over molecular scales. Here, we report an analytic engine that applies combined physics-based and data-driven modeling to arrive at a quantitative depiction of the interfacial slip via a molecular-dynamics-trained machine learning algorithm premised on fluid structuration at the wall. The resulting mapping of the system parameters to a single signature data that bridges the molecular and continuum descriptions is envisaged to be a preferred computationally inexpensive route as opposed to expensive multi-scale or molecular simulations that may otherwise be inadequate to resolve the flow features over experimentally tractable physical scales.

1.
A. V.
Nielsen
,
M. J.
Beauchamp
,
G. P.
Nordin
, and
A. T.
Woolley
, “
3D printed microfluidics
,”
Annu. Rev. Anal. Chem.
13
(
1
),
45
65
(
2020
).
2.
A.
Naderi
,
N.
Bhattacharjee
, and
A.
Folch
, “
Digital manufacturing for microfluidics
,”
Annu. Rev. Biomed. Eng.
21
(
1
),
325
364
(
2019
).
3.
E. E.
Tsur
, “
Computer-aided design of microfluidic circuits
,”
Annu. Rev. Biomed. Eng.
22
(
1
),
285
307
(
2020
).
4.
Z.
Zhang
,
L.
Wen
, and
L.
Jiang
, “
Nanofluidics for osmotic energy conversion
,”
Nat. Rev. Mater.
6
(
7
),
622
639
(
2021
).
5.
Z.
Hao
,
Q.
Zhang
,
X.
Xu
,
Q.
Zhao
,
C.
Wu
,
J.
Liu
, and
H.
Wang
, “
Nanochannels regulating ionic transport for boosting electrochemical energy storage and conversion: A review
,”
Nanoscale
12
(
30
),
15923
15943
(
2020
).
6.
W.
Lyu
,
M.
Yu
,
H.
Qu
,
Z.
Yu
,
W.
Du
, and
F.
Shen
, “
Slip-driven microfluidic devices for nucleic acid analysis
,”
Biomicrofluidics
13
(
4
),
041502
(
2019
).
7.
L.
Xue
,
H.
Yamazaki
,
R.
Ren
,
M.
Wanunu
,
A. P.
Ivanov
, and
J. B.
Edel
, “
Solid-state nanopore sensors
,”
Nat. Rev. Mater.
5
(
12
),
931
951
(
2020
).
8.
N.
Varongchayakul
,
J.
Song
,
A.
Meller
, and
M. W.
Grinstaff
, “
Single-molecule protein sensing in a nanopore: A tutorial
,”
Chem. Soc. Rev.
47
(
23
),
8512
8524
(
2018
).
9.
G.
Goel
,
C.
Hélix-Nielsen
,
H. M.
Upadhyaya
, and
S.
Goel
, “
A bibliometric study on biomimetic and bioinspired membranes for water filtration
,”
npj Clean Water
4
(
1
),
41
(
2021
).
10.
A.
Riaud
,
C.
Wang
,
J.
Zhou
,
W.
Xu
, and
Z.
Wang
, “
Hydrodynamic constraints on the energy efficiency of droplet electricity generators
,”
Microsyst. Nanoeng.
7
(
1
),
49
(
2021
).
11.
L. I.
Segerink
and
J. C. T.
Eijkel
, “
Nanofluidics in point of care applications
,”
Lab Chip
14
(
17
),
3201
3205
(
2014
).
12.
D. M.
Huang
,
C.
Sendner
,
D.
Horinek
,
R. R.
Netz
, and
L.
Bocquet
, “
Water slippage versus contact angle: A quasiuniversal relationship
,”
Phys. Rev. Lett.
101
(
22
),
226101
(
2008
).
13.
K.
Wu
,
Z.
Chen
,
J.
Li
,
X.
Li
,
J.
Xu
, and
X.
Dong
, “
Wettability effect on nanoconfined water flow
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
13
),
3358
3363
(
2017
).
14.
Q.
Cao
and
R. R.
Netz
, “
Anomalous electrokinetics at hydrophobic surfaces: Effects of ion specificity and interfacial water structure
,”
Electrochim. Acta
259
,
1011
1020
(
2018
).
15.
M.
Neek-Amal
,
F. M.
Peeters
,
I. V.
Grigorieva
, and
A. K.
Geim
, “
Commensurability effects in viscosity of nanoconfined water
,”
ACS Nano
10
(
3
),
3685
3692
(
2016
).
16.
C.
Bakli
and
S.
Chakraborty
, “
Anomalous interplay of slip, shear and wettability in nanoconfined water
,”
Nanoscale
11
(
23
),
11254
11261
(
2019
).
17.
C.
Bakli
and
S.
Chakraborty
, “
Capillary filling dynamics of water in nanopores
,”
Appl. Phys. Lett.
101
(
15
),
153112
(
2012
).
18.
C.
Bakli
and
S.
Chakraborty
, “
Slippery to sticky transition of hydrophobic nanochannels
,”
Nano Lett.
15
(
11
),
7497
7502
(
2015
).
19.
A.
Niavarani
and
N. V.
Priezjev
, “
Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids
,”
Phys. Rev. E
81
(
1
),
011606
(
2010
).
20.
X.
Qin
,
Q.
Yuan
,
Y.
Zhao
,
S.
Xie
, and
Z.
Liu
, “
Measurement of the rate of water translocation through carbon nanotubes
,”
Nano Lett.
11
(
5
),
2173
2177
(
2011
).
21.
C.
Zhu
,
H.
Li
,
Y.
Huang
,
X. C.
Zeng
, and
S.
Meng
, “
Microscopic insight into surface wetting: Relations between interfacial water structure and the underlying lattice constant
,”
Phys. Rev. Lett.
110
(
12
),
126101
(
2013
).
22.
J.
Liu
,
Y.
Qi
,
Z. Y.
Meng
, and
L.
Fu
, “
Self-learning Monte Carlo method
,”
Phys. Rev. B
95
(
4
),
041101
(
2017
).
23.
T. D.
Huan
,
R.
Batra
,
J.
Chapman
,
S.
Krishnan
,
L.
Chen
, and
R.
Ramprasad
, “
A universal strategy for the creation of machine learning-based atomistic force fields
,”
npj Comput. Mater.
3
(
1
),
37
(
2017
).
24.
V.
Botu
and
R.
Ramprasad
, “
Adaptive machine learning framework to accelerate ab initio molecular dynamics
,”
Int. J. Quantum Chem.
115
(
16
),
1074
1083
(
2015
).
25.
C.
Li
and
G. A.
Voth
, “
Using machine learning to greatly accelerate path integral ab initio molecular dynamics
,”
J. Chem. Theory Comput.
18
(
2
),
599
604
(
2022
).
26.
F.
Sofos
and
T. E.
Karakasidis
, “
Nanoscale slip length prediction with machine learning tools
,”
Sci. Rep.
11
(
1
),
12520
(
2021
).
27.
C. J.
Leverant
,
J. A.
Harvey
, and
T. M.
Alam
, “
Machine learning-based upscaling of finite-size molecular dynamics diffusion simulations for binary fluids
,”
J. Phys. Chem. Lett.
11
(
24
),
10375
10381
(
2020
).
28.
R.
Vinuesa
and
S. L.
Brunton
, “
Enhancing computational fluid dynamics with machine learning
,”
Nat. Comput. Sci.
2
(
6
),
358
366
(
2022
).
29.
D.
Kochkov
,
J. A.
Smith
,
A.
Alieva
,
Q.
Wang
,
M. P.
Brenner
, and
S.
Hoyer
, “
Machine learning-accelerated computational fluid dynamics
,”
Proc. Natl. Acad. Sci. U. S. A
118
(
21
),
e2101784118
(
2021
).
30.
F.
Castellani
,
D.
Astolfi
,
M.
Mana
,
M.
Burlando
,
C.
Meißner
, and
E.
Piccioni
, “
Wind power forecasting techniques in complex terrain: ANN vs ANN-CFD hybrid approach
,”
J. Phys.: Conf. Ser.
753
,
082002
(
2016
).
31.
S.
Cai
,
Z.
Wang
,
S.
Wang
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks for heat transfer problems
,”
J. Heat Transfer
143
(
6
),
060801
(
2021
).
32.
S.
Cai
,
Z.
Mao
,
Z.
Wang
,
M.
Yin
, and
G. E.
Karniadakis
, “
Physics-informed neural networks (PINNs) for fluid mechanics: A review
,”
Acta Mech. Sin.
37
(
12
),
1727
1738
(
2021
).
33.
C.
Yan
,
S.
Ju
,
D.
Guo
,
G.
Yang
, and
S.
Yao
, in
Vol. 2: Multiph. Flow (MFTC); Comput. Fluid Dyn. (CFDTC); Micro Nano Fluid Dyn.
(
American Society of Mechanical Engineers
,
2022
).
34.
X.
Jin
,
S.
Cai
,
H.
Li
, and
G. E.
Karniadakis
, “
NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
426
,
109951
(
2021
).
35.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
36.
M.
Raissi
,
Z.
Wang
,
M. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
Deep learning of vortex-induced vibrations
,”
J. Fluid Mech.
861
,
119
137
(
2019
).
37.
M.
Raissi
,
A.
Yazdani
, and
G. E.
Karniadakis
, “
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
,”
Science
367
(
6481
),
1026
1030
(
2020
).
38.
S.
Cai
,
H.
Li
,
F.
Zheng
,
F.
Kong
,
M.
Dao
,
G. E.
Karniadakis
, and
S.
Suresh
, “
Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
13
),
e2100697118
(
2021
).
39.
K.
Yang
,
X.
Xu
,
B.
Yang
,
B.
Cook
,
H.
Ramos
,
N. M. A.
Krishnan
,
M. M.
Smedskjaer
,
C.
Hoover
, and
M.
Bauchy
, “
Predicting the Young’s modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning
,”
Sci. Rep.
9
(
1
),
8739
(
2019
).
40.
C. D.
Quach
,
J. B.
Gilmer
,
D.
Pert
,
A.
Mason-Hogans
,
C. R.
Iacovella
,
P. T.
Cummings
, and
C.
McCabe
, “
High-throughput screening of tribological properties of monolayer films using molecular dynamics and machine learning
,”
J. Chem. Phys.
156
(
15
),
154902
(
2022
).
41.
I.
Francis
and
S. C.
Saha
, “
Computational fluid dynamics and machine learning algorithms analysis of striking particle velocity magnitude, particle diameter, and impact time inside an acinar region of the human lung
,”
Phys. Fluids
34
(
10
),
101904
(
2022
).
42.
G. T.
Craven
,
N.
Lubbers
,
K.
Barros
, and
S.
Tretiak
, “
Machine learning approaches for structural and thermodynamic properties of a Lennard-Jones fluid
,”
J. Chem. Phys.
153
(
10
),
104502
(
2020
).
43.
L.
Tang
,
K. M.
Ho
, and
C. Z.
Wang
, “
Molecular dynamics simulation of metallic Al–Ce liquids using a neural network machine learning interatomic potential
,”
J. Chem. Phys.
155
(
19
),
194503
(
2021
).
44.
B. E.
Husic
,
N. E.
Charron
,
D.
Lemm
,
J.
Wang
,
A.
Pérez
,
M.
Majewski
,
A.
Krämer
,
Y.
Chen
,
S.
Olsson
,
G.
de Fabritiis
,
F.
Noé
, and
C.
Clementi
, “
Coarse graining molecular dynamics with graph neural networks
,”
J. Chem. Phys.
153
(
19
),
194101
(
2020
).
45.
M.
Ceriotti
, “
Unsupervised machine learning in atomistic simulations, between predictions and understanding
,”
J. Chem. Phys.
150
(
15
),
150901
(
2019
).
46.
A.
Gubbiotti
,
M.
Baldelli
,
G.
Di Muccio
,
P.
Malgaretti
,
S.
Marbach
, and
M.
Chinappi
, “
Electroosmosis in nanopores: Computational methods and technological applications
,”
Adv. Phys. X
7
(
1
),
2036638
(
2022
).
47.
C.
Sendner
,
D.
Horinek
,
L.
Bocquet
, and
R. R.
Netz
, “
Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion
,”
Langmuir
25
(
18
),
10768
10781
(
2009
).
48.
J.
Janeček
and
R. R.
Netz
, “
Interfacial water at hydrophobic and hydrophilic surfaces: Depletion versus adsorption
,”
Langmuir
23
(
16
),
8417
8429
(
2007
).
49.
M.
Sega
,
M.
Sbragaglia
,
L.
Biferale
, and
S.
Succi
, “
The importance of chemical potential in the determination of water slip in nanochannels
,”
Eur. Phys. J. E
38
(
11
),
127
(
2015
).
50.
S.
Marchio
,
S.
Meloni
,
A.
Giacomello
,
C.
Valeriani
, and
C.M.
Casciola
, “
Pressure control in interfacial systems: Atomistic simulations of vapor nucleation
,”
J. Chem. Phys.
148
(
6
),
064706
(
2018
).
51.
A.
Shahmardi
,
O.
Tammisola
,
M.
Chinappi
, and
L.
Brandt
, “
Effects of surface nanostructure and wettability on pool boiling: A molecular dynamics study
,”
Int. J. Therm. Sci.
167
,
106980
(
2021
).
52.
K.
Meidani
,
Z.
Cao
, and
A.
Barati Farimani
, “
Titanium carbide MXene for water desalination: A molecular dynamics study
,”
ACS Appl. Nano Mater.
4
(
6
),
6145
6151
(
2021
).
53.
M.
Chinappi
and
C.
Casciola
, “
Intrinsic slip on hydrophobic self-assembled monolayer coatings
,”
Phys. Fluids
22
(
4
),
042003
(
2010
).
54.
S.
Liao
,
Q.
Ke
,
Y.
Wei
, and
L.
Li
, “
Water’s motions in x-y and z directions of 2D nanochannels: Entirely different but tightly coupled
,”
Nano Res.
16
,
6298
(
2023
).
55.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
, “
Flexible simple point-charge water model with improved liquid-state properties
,”
J. Chem. Phys.
124
(
2
),
024503
(
2006
).
56.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
(
3
),
1695
(
1985
).
57.
D. J.
Evans
and
B. L.
Holian
, “
The Nose–Hoover thermostat
,”
J. Chem. Phys.
83
(
8
),
4069
4074
(
1985
).
58.
B. A.
Luty
,
M. E.
Davis
,
I. G.
Tironi
, and
W. F.
Van Gunsteren
, “
A comparison of particle–particle, particle–mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems
,”
Mol. Simul.
14
(
1
),
11
20
(
1994
).
59.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
60.
J. H.
Weijs
,
A.
Marchand
,
B.
Andreotti
,
D.
Lohse
, and
J. H.
Snoeijer
, “
Origin of line tension for a Lennard-Jones nanodroplet
,”
Phys. Fluids
23
(
2
),
22001
(
2011
).
61.
B.
Ramos-Alvarado
,
S.
Kumar
, and
G. P.
Peterson
, “
Wettability transparency and the quasiuniversal relationship between hydrodynamic slip and contact angle
,”
Appl. Phys. Lett.
108
(
7
),
74105
(
2016
).
62.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
(
1
),
33
38
(
1996
).
63.
C.
Sun
,
R.
Zhou
,
Z.
Zhao
, and
B.
Bai
, “
Nanoconfined fluids: What can we expect from them?
,”
J. Phys. Chem. Lett.
11
(
12
),
4678
4692
(
2020
).
64.
F.
Sofos
,
T.
Karakasidis
, and
A.
Liakopoulos
, “
Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls
,”
Int. J. Heat Mass Transfer
52
(
3–4
),
735
743
(
2009
).
65.
L.
Zhang
,
A. G.
Zhou
,
B. R.
Sun
,
K. S.
Chen
, and
H. Z.
Yu
, “
Functional and versatile superhydrophobic coatings via stoichiometric silanization
,”
Nat. Commun.
12
(
1
),
982
(
2021
).
66.
S.
Joseph
and
N. R.
Aluru
, “
Why are carbon nanotubes fast transporters of water?
,”
Nano Lett.
8
(
2
),
452
458
(
2008
).
67.
W. W.
Daniel
,
Applied Nonparametric Statistics
(
PWS-KENT Publishing
,
Duxbury
,
1990
).
68.
K.
Falk
,
F.
Sedlmeier
,
L.
Joly
,
R. R.
Netz
, and
L.
Bocquet
, “
Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction
,”
Nano Lett.
10
(
10
),
4067
4073
(
2010
).
69.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
(
16
),
1701
1718
(
2005
).
70.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
71.
F.
Pedregosa
,
O.
Grisel
,
R.
Weiss
,
A.
Passos
,
M.
Brucher
,
G.
Varoquax
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
, and
M.
Brucher
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
72.
B.
Ramos-Alvarado
,
S.
Kumar
, and
G. P.
Peterson
, “
Hydrodynamic slip in silicon nanochannels
,”
Phys. Rev. E
93
(
3
),
033117
(
2016
).

Supplementary Material

You do not currently have access to this content.