Knowledge of the physical properties of ionic liquids (ILs), such as the surface tension and speed of sound, is important for both industrial and research applications. Unfortunately, technical challenges and costs limit exhaustive experimental screening efforts of ILs for these critical properties. Previous work has demonstrated that the use of quantum-mechanics-based thermochemical property prediction tools, such as the conductor-like screening model for real solvents, when combined with machine learning (ML) approaches, may provide an alternative pathway to guide the rapid screening and design of ILs for desired physiochemical properties. However, the question of which machine-learning approaches are most appropriate remains. In the present study, we examine how different ML architectures, ranging from tree-based approaches to feed-forward artificial neural networks, perform in generating nonlinear multivariate quantitative structure–property relationship models for the prediction of the temperature- and pressure-dependent surface tension of and speed of sound in ILs over a wide range of surface tensions (16.9–76.2 mN/m) and speeds of sound (1009.7–1992 m/s). The ML models are further interrogated using the powerful interpretation method, shapley additive explanations. We find that several different ML models provide high accuracy, according to traditional statistical metrics. The decision tree-based approaches appear to be the most accurate and precise, with extreme gradient-boosting trees and gradient-boosting trees being the best performers. However, our results also indicate that the promise of using machine-learning to gain deep insights into the underlying physics driving structure–property relationships in ILs may still be somewhat premature.

1.
N. V.
Plechkova
and
K. R.
Seddon
, “
Applications of ionic liquids in the chemical industry
,”
Chem. Soc. Rev.
37
(
1
),
123
150
(
2008
).
2.
M.
Mohan
,
H.
Choudhary
,
A.
George
,
B. A.
Simmons
,
K.
Sale
, and
J. M.
Gladden
, “
Towards understanding of delignification of grassy and woody biomass in cholinium-based ionic liquids
,”
Green Chem.
23
(
16
),
6020
6035
(
2021
).
3.
M.
Mohan
,
P.
Viswanath
,
T.
Banerjee
, and
V. V.
Goud
, “
Multiscale modelling strategies and experimental insights for the solvation of cellulose and hemicellulose in ionic liquids
,”
Mol. Phys.
116
(
15–16
),
2108
2128
(
2018
).
4.
M.
Mohan
,
K.
Huang
,
V. R.
Pidatala
,
B. A.
Simmons
,
S.
Singh
,
K. L.
Sale
, and
J. M.
Gladden
, “
Prediction of solubility parameters of lignin and ionic liquids using multi-resolution simulation approaches
,”
Green Chem.
24
,
1165
1176
(
2022
).
5.
M.
Mohan
,
J. D.
Keasling
,
B. A.
Simmons
, and
S.
Singh
, “
In-silico COSMO-RS predictive screening of ionic liquids for the dissolution of plastic
,”
Green Chem.
24
,
4140
4152
(
2022
).
6.
M.
Mohan
,
V. V.
Goud
, and
T.
Banerjee
, “
Solubility of glucose, xylose, fructose and galactose in ionic liquids: Experimental and theoretical studies using a continuum solvation model
,”
Fluid Phase Equilib.
395
,
33
43
(
2015
).
7.
M.
Hashemkhani
,
R.
Soleimani
,
H.
Fazeli
,
M.
Lee
,
A.
Bahadori
, and
M.
Tavalaeian
, “
Prediction of the binary surface tension of mixtures containing ionic liquids using Support Vector Machine algorithms
,”
J. Mol. Liq.
211
,
534
552
(
2015
).
8.
R. J.
Obaid
,
H.
Kotb
,
A. M.
Alsubaiyel
,
J.
Uddin
,
M.
Sani Sarjad
,
M.
Lutfor Rahman
, and
S. A.
Ahmed
, “
Novel and accurate mathematical simulation of various models for accurate prediction of surface tension parameters through ionic liquids
,”
Arabian J. Chem.
15
(
11
),
104228
(
2022
).
9.
J.
Restolho
,
A. P.
Serro
,
J. L.
Mata
, and
B.
Saramago
, “
Viscosity and surface tension of 1-ethanol-3-methylimidazolium tetrafluoroborate and 1-methyl-3-octylimidazolium tetrafluoroborate over a wide temperature range
,”
J. Chem. Eng. Data
54
(
3
),
950
955
(
2009
).
10.
M. H.
Ghatee
,
M.
Zare
,
A. R.
Zolghadr
, and
F.
Moosavi
, “
Temperature dependence of viscosity and relation with the surface tension of ionic liquids
,”
Fluid Phase Equilib.
291
(
2
),
188
194
(
2010
).
11.
P. K.
Kilaru
and
P.
Scovazzo
, “
Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperature ionic liquids. Part 2. Using activation energy of viscosity
,”
Ind. Eng. Chem. Res.
47
(
3
),
910
919
(
2008
).
12.
T.
Raj
,
R.
Gaur
,
P.
Dixit
,
R. P.
Gupta
,
V.
Kagdiyal
,
R.
Kumar
, and
D. K.
Tuli
, “
Ionic liquid pretreatment of biomass for sugars production: Driving factors with a plausible mechanism for higher enzymatic digestibility
,”
Carbohydr. Polym.
149
,
369
381
(
2016
).
13.
K. M.
Lee
,
J. Y.
Hong
, and
W. Y.
Tey
, “
Combination of ultrasonication and deep eutectic solvent in pretreatment of lignocellulosic biomass for enhanced enzymatic saccharification
,”
Cellulose
28
(
3
),
1513
1526
(
2021
).
14.
A. J.
Queimada
,
J. A. P.
Coutinho
,
I. M.
Marrucho
, and
J. L.
Daridon
, “
Corresponding-states modeling of the speed of sound of long-chain hydrocarbons
,”
Int. J. Thermophys.
27
(
4
),
1095
1109
(
2006
).
15.
R. L.
Gardas
and
J. A. P.
Coutinho
, “
Estimation of speed of sound of ionic liquids using surface tensions and densities: A volume based approach
,”
Fluid Phase Equilib.
267
(
2
),
188
192
(
2008
).
16.
A. F.
Estrada-Alexanders
and
D.
Justo
, “
New method for deriving accurate thermodynamic properties from speed-of-sound
,”
J. Chem. Thermodyn.
36
(
5
),
419
429
(
2004
).
17.
G.
Járvás
,
J.
Kontos
,
G.
Babics
, and
A.
Dallos
, “
A novel method for the surface tension estimation of ionic liquids based on COSMO-RS theory
,”
Fluid Phase Equilib.
468
,
9
17
(
2018
).
18.
R.
Wan
,
M.
Li
,
F.
Song
,
Y.
Xiao
,
F.
Zeng
,
C.
Peng
, and
H.
Liu
, “
Predicting the thermal conductivity of ionic liquids using a quantitative structure–property relationship
,”
Ind. Eng. Chem. Res.
61
(
32
),
12032
12039
(
2022
).
19.
M.
Mohan
,
M. D.
Smith
,
O.
Demerdash
,
B.
Simmons
,
S.
Singh
,
M. K.
Kidder
, and
J. C.
Smith
, “
Quantum chemistry-driven machine learning approach for the prediction of the surface tension and speed of sound of ionic liquids
,”
ACS Sustainable Chem. Eng.
11
(20),
7809
7821
(
2023
).
20.
M.
Mohan
,
O.
Demerdash
,
B. A.
Simmons
,
J. C.
Smith
,
M. K.
Kidder
, and
S.
Singh
, “
Accurate prediction of carbon dioxide capture by deep eutectic solvents using quantum chemistry and a neural network
,”
Green Chem.
25
,
3475
3492
(
2023
).
21.
I. U.
Ekanayake
,
D. P. P.
Meddage
, and
U.
Rathnayake
, “
A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using shapley additive explanations (SHAP)
,”
Case Stud. Constr. Mater.
16
,
e01059
(
2022
).
22.
D.
Shi
,
F.
Zhou
,
W.
Mu
,
C.
Ling
,
T.
Mu
,
G.
Yu
, and
R.
Li
, “
Deep insights into the viscosity of deep eutectic solvents by an XGBoost-based model plus SHapley Additive exPlanation
,”
Phys. Chem. Chem. Phys.
24
(
42
),
26029
26036
(
2022
).
23.
S.-P.
Mousavi
,
S.
Atashrouz
,
M.
Nait Amar
,
F.
Hadavimoghaddam
,
M.-R.
Mohammadi
,
A.
Hemmati-Sarapardeh
, and
A.
Mohaddespour
, “
Modeling surface tension of ionic liquids by chemical structure-intelligence based models
,”
J. Mol. Liq.
342
,
116961
(
2021
).
24.
Y.
Huang
,
H.
Dong
,
X.
Zhang
,
C.
Li
, and
S.
Zhang
, “
A new fragment contribution‐corresponding states method for physicochemical properties prediction of ionic liquids
,”
AIChE J.
59
(
4
),
1348
1359
(
2013
).
25.
R.
Haghbakhsh
,
S.
Keshtkari
, and
S.
Raeissi
, “
Simple estimations of the speed of sound in ionic liquids, with and without any physical property data available
,”
Fluid Phase Equilib.
503
,
112291
(
2020
).
26.
Y.
Xu
, “
Using artificial neural network to predict speed of sound and heat capacity of pure ionic liquid
,” Denver ProQuest dissertations (
University of Colorado
,
2017
), https://www.proquest.com/openview/424c5fa12f8f3ed823c920a6a9a16142/1?pq-origsite=gscholar&cbl=18750; accessed 24 April 2023.
27.
R. L.
Gardas
and
J. A.
Coutinho
, “
Applying a QSPR correlation to the prediction of surface tensions of ionic liquids
,”
Fluid Phase Equilib.
265
(
1–2
),
57
65
(
2008
).
28.
A.
Klamt
, “
The COSMO and COSMO‐RS solvation models
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
(
5
),
699
709
(
2011
).
29.
M.
Mohan
,
B. A.
Simmons
,
K. L.
Sale
, and
S.
Singh
, “
Multiscale molecular simulations for the solvation of lignin in ionic liquids
,”
Sci. Rep.
13
(
1
),
271
(
2023
).
30.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
, and
V.
Dubourg
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
31.
M.
Sharifzadeh
,
A.
Sikinioti-Lock
, and
N.
Shah
, “
Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression
,”
Renewable Sustainable Energy Rev.
108
,
513
538
(
2019
).
32.
M.
Seeger
, “
Gaussian processes for machine learning
,”
Int. J. Neural Syst.
14
(
02
),
69
106
(
2004
).
33.
O.
Kramer
, “
Scikit-learn
,” in
Machine Learning for Evolution Strategies
(
Springer
,
2016
), Vol.
20
, pp.
45
53
.
34.
E.
Schulz
,
M.
Speekenbrink
, and
A.
Krause
, “
A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
,”
J. Math. Psychol.
85
,
1
16
(
2018
).
35.
V. L.
Deringer
,
A. P.
Bartók
,
N.
Bernstein
,
D. M.
Wilkins
,
M.
Ceriotti
, and
G.
Csányi
, “
Gaussian process regression for materials and molecules
,”
Chem. Rev.
121
(
16
),
10073
10141
(
2021
).
36.
K.
Shahbaz
,
S.
Baroutian
,
F. S.
Mjalli
,
M. A.
Hashim
, and
I. M.
AlNashef
, “
Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques
,”
Thermochim. Acta
527
,
59
66
(
2012
).
37.
V.
Vapnik
,
The Nature of Statistical Learning Theory
(
Springer Science & Business Media
,
1999
).
38.
J. A. K.
Suykens
and
J.
Vandewalle
, “
Least squares support vector machine classifiers
,”
Neural Process. Lett.
9
(
3
),
293
300
(
1999
).
39.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
(
1
),
5
32
(
2001
).
40.
L.-Y.
Yu
,
G.-P.
Ren
,
X.-J.
Hou
,
K.-J.
Wu
, and
Y.
He
, “
Transition state theory-inspired neural network for estimating the viscosity of deep eutectic solvents
,”
ACS Cent. Sci.
8
(
7
),
983
995
(
2022
).
41.
O. D.
Abarbanel
and
G. R.
Hutchison
, “
Machine learning to accelerate screening for Marcus reorganization energies
,”
J. Chem. Phys.
155
(
5
),
054106
(
2021
).
42.
E.
Bisong
, “
More supervised machine learning techniques with scikit-learn
,” in
Building Machine Learning and Deep Learning Models on Google Cloud Platform
(
Springer
,
2019
), pp.
287
308
.
43.
S. M.
Lundberg
and
S.-I.
Lee
, “
A unified approach to interpreting model predictions
,” in
Advances in Neural Information Processing Systems
(
2017
), Vol.
30
, pp. 4768–4777.
44.
J. P.
Wojeicchowski
,
D. O.
Abranches
,
A. M.
Ferreira
,
M. R.
Mafra
, and
J. A. P.
Coutinho
, “
Using COSMO-RS to predict solvatochromic parameters for deep eutectic solvents
,”
ACS Sustainable Chem. Eng.
9
(
30
),
10240
10249
(
2021
).
45.
A.
Kondor
,
G.
Járvás
,
J.
Kontos
, and
A.
Dallos
, “
Temperature dependent surface tension estimation using COSMO-RS sigma moments
,”
Chem. Eng. Res. Des.
92
(
12
),
2867
2872
(
2014
).
46.
A.
Alibakhshi
and
B.
Hartke
, “
Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model
,”
Nat. Commun.
12
(
1
),
3584
(
2021
).
47.
M.
Tariq
,
M. G.
Freire
,
B.
Saramago
,
J. A. P.
Coutinho
,
J. N. C.
Lopes
, and
L. P. N.
Rebelo
, “
Surface tension of ionic liquids and ionic liquid solutions
,”
Chem. Soc. Rev.
41
(
2
),
829
868
(
2012
).
48.
S.
Panda
and
R. L.
Gardas
, “
Measurement and correlation for the thermophysical properties of novel pyrrolidonium ionic liquids: Effect of temperature and alkyl chain length on anion
,”
Fluid Phase Equilib.
386
,
65
74
(
2015
).
49.
R.
Sedev
, “
Surface tension, interfacial tension and contact angles of ionic liquids
,”
Curr. Opin. Colloid Interface Sci.
16
(
4
),
310
316
(
2011
).
50.
K.
Huang
,
M.
Mohan
,
A.
George
,
B. A.
Simmons
,
Y.
Xu
, and
J. M.
Gladden
, “
Integration of acetic acid catalysis with one-pot protic ionic liquid configuration to achieve high-efficient biorefinery of poplar biomass
,”
Green Chem.
23
(
16
),
6036
6049
(
2021
).
51.
M.
Ramos-Estrada
,
I. Y.
López-Cortés
,
G. A.
Iglesias-Silva
, and
F.
Pérez-Villaseñor
, “
Density, viscosity, and speed of sound of pure and binary mixtures of ionic liquids based on sulfonium and imidazolium cations and bis(trifluoromethylsulfonyl) imide anion with 1-propanol
,”
J. Chem. Eng. Data
63
(
12
),
4425
4444
(
2018
).
52.
M.
Dzida
,
M.
Musiał
,
E.
Zorębski
,
S.
Jężak
,
J.
Skowronek
,
K.
Malarz
,
A.
Mrozek-Wilczkiewicz
,
R.
Musiol
,
A.
Cyranka
, and
M.
Świątek
, “
Comparative study of the high pressure thermophysical properties of 1-ethyl-3-methylimidazolium and 1,3-diethylimidazolium ethyl sulfates for use as sustainable and efficient hydraulic fluids
,”
ACS Sustainable Chem. Eng.
6
(
8
),
10934
10943
(
2018
).
53.
E.
Zorębski
,
M.
Musiał
,
K.
Bałuszyńska
,
M.
Zorębski
, and
M.
Dzida
, “
Isobaric and isochoric heat capacities as well as isentropic and isothermal compressibilities of di- and trisubstituted imidazolium-based ionic liquids as a function of temperature
,”
Ind. Eng. Chem. Res.
57
(
14
),
5161
5172
(
2018
).
54.
Y.
Wei
,
T.
Xu
,
X.
Zhang
,
Y.
Di
, and
Q.
Zhang
, “
Thermodynamic properties and intermolecular interactions of a series of N-butylammonium carboxylate ionic liquids
,”
J. Chem. Eng. Data
63
(
12
),
4475
4483
(
2018
).
55.
Z.
Song
,
Q.
Yan
,
M.
Xia
,
X.
Qi
,
Z.
Zhang
,
J.
Wei
,
D.
Fang
, and
X.
Ma
, “
Physicochemical properties of N-alkylpyridine trifluoroacetate ionic liquids [CnPy][TFA] (n = 2–6)
,”
J. Chem. Thermodyn.
155
,
106366
(
2021
).
56.
D. L.
Shrestha
and
D. P.
Solomatine
, “
Machine learning approaches for estimation of prediction interval for the model output
,”
Neural Networks
19
(
2
),
225
235
(
2006
).
57.
F.
Tavazza
,
B.
DeCost
, and
K.
Choudhary
, “
Uncertainty prediction for machine learning models of material properties
,”
ACS Omega
6
(
48
),
32431
32440
(
2021
).
58.
T.
Chen
,
T.
Chen
,
X.
Wu
, and
Y.
Xu
, “
Effects of the structure on physicochemical properties and CO2 absorption of hydroxypyridine anion-based protic ionic liquids
,”
J. Mol. Liq.
362
,
119743
(
2022
).

Supplementary Material

You do not currently have access to this content.