Many molecular systems and physical phenomena are controlled by local fluctuations and microscopic dynamical rearrangements of the constitutive interacting units that are often difficult to detect. This is the case, for example, of phase transitions, phase equilibria, nucleation events, and defect propagation, to mention a few. A detailed comprehension of local atomic environments and of their dynamic rearrangements is essential to understand such phenomena and also to draw structure–property relationships useful to unveil how to control complex molecular systems. Considerable progress in the development of advanced structural descriptors [e.g., Smooth Overlap of Atomic Position (SOAP), etc.] has certainly enhanced the representation of atomic-scale simulations data. However, despite such efforts, local dynamic environment rearrangements still remain difficult to elucidate. Here, exploiting the structurally rich description of atomic environments of SOAP and building on the concept of time-dependent local variations, we developed a SOAP-based descriptor, TimeSOAP (τSOAP), which essentially tracks time variations in local SOAP environments surrounding each molecule (i.e., each SOAP center) along ensemble trajectories. We demonstrate how analysis of the time-series τSOAP data and of their time derivatives allows us to detect dynamic domains and track instantaneous changes of local atomic arrangements (i.e., local fluctuations) in a variety of molecular systems. The approach is simple and general, and we expect that it will help shed light on a variety of complex dynamical phenomena.

1.
J.
Chapman
,
N.
Goldman
, and
B. C.
Wood
, “
Efficient and universal characterization of atomic structures through a topological graph order parameter
,”
npj Comput. Mater.
8
,
37
(
2022
).
2.
S. K.
Stavroglou
,
A. A.
Pantelous
,
H. E.
Stanley
, and
K. M.
Zuev
, “
Unveiling causal interactions in complex systems
,”
Proc. Natl. Acad. Sci.
117
,
7599
7605
(
2020
).
3.
D.
Bochicchio
,
M.
Salvalaglio
, and
G. M.
Pavan
, “
Into the dynamics of a supramolecular polymer at submolecular resolution
,”
Nat. Commun.
8
,
147
(
2017
).
4.
D.
Bochicchio
,
S.
Kwangmettatam
,
T.
Kudernac
, and
G. M.
Pavan
, “
How defects control the out-of-equilibrium dissipative evolution of a supramolecular tubule
,”
ACS Nano
13
,
4322
4334
(
2019
).
5.
L.
Albertazzi
,
D.
van der Zwaag
,
C. M. A.
Leenders
,
R.
Fitzner
,
R. W.
van der Hofstad
, and
E. W.
Meijer
, “
Probing exchange pathways in one-dimensional aggregates with super-resolution microscopy
,”
Science
344
,
491
495
(
2014
).
6.
D.
Wang
,
M.
Hermes
,
S.
Najmr
,
N.
Tasios
,
A.
Grau-Carbonell
,
Y.
Liu
,
S.
Bals
,
M.
Dijkstra
,
C. B.
Murray
, and
A.
van Blaaderen
, “
Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement
,”
Nat. Commun.
13
,
6001
(
2022
).
7.
G. C.
Sosso
,
T. F.
Whale
,
M. A.
Holden
,
P.
Pedevilla
,
B. J.
Murray
, and
A.
Michaelides
, “
Unravelling the origins of ice nucleation on organic crystals
,”
Chemical science
9
,
8077
8088
(
2018
).
8.
A. M.
Goryaeva
,
C.
Lapointe
,
C.
Dai
,
J.
Dérès
,
J.-B.
Maillet
, and
M.-C.
Marinica
, “
Reinforcing materials modelling by encoding the structures of defects in crystalline solids into distortion scores
,”
Nat. Commun.
11
,
4691
(
2020
).
9.
I. M.
Lifshitz
and
A. M.
Kosevich
, “
The dynamics of a crystal lattice with defects
,”
Rep. Prog. Phys.
29
,
217
(
1966
).
10.
M. T.
Dove
,
Introduction to Lattice Dynamics
(
Cambridge University Press
,
1993
), Vol.
4
.
11.
Z. H.
Stachurski
, “
On structure and properties of amorphous materials
,”
Materials
4
,
1564
1598
(
2011
).
12.
Q.
Li
,
Y.
Xu
,
S.
Zheng
,
X.
Guo
,
H.
Xue
, and
H.
Pang
, “
Recent progress in some amorphous materials for supercapacitors
,”
Small
14
,
1800426
(
2018
).
13.
W. X.
Zhou
,
Y.
Cheng
,
K. Q.
Chen
,
G.
Xie
,
T.
Wang
, and
G.
Zhang
, “
Thermal conductivity of amorphous materials
,”
Adv. Funct. Mater.
30
,
1903829
(
2020
).
14.
S.
Yan
,
K.
Abhilash
,
L.
Tang
,
M.
Yang
,
Y.
Ma
,
Q.
Xia
,
Q.
Guo
, and
H.
Xia
, “
Research advances of amorphous metal oxides in electrochemical energy storage and conversion
,”
Small
15
,
e1804371
(
2019
).
15.
C. W.
Rosenbrock
,
E. R.
Homer
,
G.
Csányi
, and
G. L. W.
Hart
, “
Discovering the building blocks of atomic systems using machine learning: Application to grain boundaries
,”
npj Comput. Mater.
3
,
29
(
2017
).
16.
A.
Cardellini
,
F.
Jiménez-Ángeles
,
P.
Asinari
, and
M.
Olvera de la Cruz
, “
A modeling-based design to engineering protein hydrogels with random copolymers
,”
ACS Nano
15
,
16139
16148
(
2021
).
17.
F.
Tantakitti
,
J.
Boekhoven
,
X.
Wang
,
R. V.
Kazantsev
,
T.
Yu
,
J.
Li
,
E.
Zhuang
,
R.
Zandi
,
J. H.
Ortony
,
C. J.
Newcomb
et al, “
Energy landscapes and functions of supramolecular systems
,”
Nat. Mater.
15
,
469
476
(
2016
).
18.
K.
Carter-Fenk
,
K. U.
Lao
,
K.-Y.
Liu
, and
J. M.
Herbert
, “
Accurate and efficient ab initio calculations for supramolecular complexes: Symmetry-adapted perturbation theory with many-body dispersion
,”
J. Phys. Chem. Lett.
10
,
2706
2714
(
2019
).
19.
P. W. J. M.
Frederix
,
I.
Patmanidis
, and
S. J.
Marrink
, “
Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments
,”
Chem. Soc. Rev.
47
,
3470
3489
(
2018
).
20.
O.-S.
Lee
,
V.
Cho
, and
G. C.
Schatz
, “
Modeling the self-assembly of peptide amphiphiles into fibers using coarse-grained molecular dynamics
,”
Nano Lett.
12
,
4907
4913
(
2012
).
21.
K. K.
Bejagam
and
S.
Balasubramanian
, “
Supramolecular polymerization: A coarse grained molecular dynamics study
,”
J. Phys. Chem. B
119
,
5738
5746
(
2015
).
22.
C.
Perego
,
L.
Pesce
,
R.
Capelli
,
S. J.
George
, and
G. M.
Pavan
, “
Multiscale molecular modelling of atp-fueled supramolecular polymerisation and depolymerisation
,”
ChemSystemsChem
3
,
e2000038
(
2021
).
23.
D.
Bochicchio
and
G. M.
Pavan
, “
From cooperative self-assembly to water-soluble supramolecular polymers using coarse-grained simulations
,”
ACS Nano
11
,
1000
1011
(
2017
).
24.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
25.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
26.
M.
Crippa
,
C.
Perego
,
A. L.
de Marco
, and
G. M.
Pavan
, “
Molecular communications in complex systems of dynamic supramolecular polymers
,”
Nat. Commun.
13
,
2162
(
2022
).
27.
P. C. T.
Souza
,
R.
Alessandri
,
J.
Barnoud
,
S.
Thallmair
,
I.
Faustino
,
F.
Grünewald
,
I.
Patmanidis
,
H.
Abdizadeh
,
B. M. H.
Bruininks
,
T. A.
Wassenaar
et al, “
Martini 3: A general purpose force field for coarse-grained molecular dynamics
,”
Nat. Methods
18
,
382
388
(
2021
).
28.
C.
Abrams
and
G.
Bussi
, “
Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration
,”
Entropy
16
,
163
199
(
2013
).
29.
A. L.
Ferguson
, “
Machine learning and data science in soft materials engineering
,”
J. Phys.: Condens. Matter
30
,
043002
(
2017
).
30.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
, “
Machine learning for molecular and materials science
,”
Nature
559
,
547
555
(
2018
).
31.
N. E.
Jackson
,
M. A.
Webb
, and
J. J.
de Pablo
, “
Recent advances in machine learning towards multiscale soft materials design
,”
Curr. Opin. Chem. Eng.
23
,
106
114
(
2019
).
32.
F.
Häse
,
L. M.
Roch
,
P.
Friederich
, and
A.
Aspuru-Guzik
, “
Designing and understanding light-harvesting devices with machine learning
,”
Nat. Commun.
11
,
4587
(
2020
).
33.
A.
Glielmo
,
B. E.
Husic
,
A.
Rodriguez
,
C.
Clementi
,
F.
Noé
, and
A.
Laio
, “
Unsupervised learning methods for molecular simulation data
,”
Chem. Rev.
121
,
9722
9758
(
2021
).
34.
P. J.
Steinhardt
and
P.
Chaudhari
, “
Point and line defects in glasses
,”
Philos. Mag. A
44
,
1375
1381
(
1981
).
35.
G.
Ackland
and
A.
Jones
, “
Applications of local crystal structure measures in experiment and simulation
,”
Phys. Rev. B
73
,
054104
(
2006
).
36.
J. D.
Honeycutt
and
H. C.
Andersen
, “
Molecular dynamics study of melting and freezing of small Lennard-Jones clusters
,”
J. Phys. Chem.
91
,
4950
4963
(
1987
).
37.
A.
Stukowski
, “
Structure identification methods for atomistic simulations of crystalline materials
,”
Modell. Simul. Mater. Sci. Eng.
20
,
045021
(
2012
).
38.
B.
Cheng
,
R.-R.
Griffiths
,
S.
Wengert
,
C.
Kunkel
,
T.
Stenczel
,
B.
Zhu
,
V. L.
Deringer
,
N.
Bernstein
,
J. T.
Margraf
,
K.
Reuter
et al, “
Mapping materials and molecules
,”
Acc. Chem. Res.
53
,
1981
1991
(
2020
).
39.
M.
Ceriotti
, “
Unsupervised machine learning in atomistic simulations, between predictions and understanding
,”
J. Chem. Phys.
150
,
150901
(
2019
).
40.
J.
Wang
,
S.
Olsson
,
C.
Wehmeyer
,
A.
Pérez
,
N. E.
Charron
,
G.
De Fabritiis
,
F.
Noé
, and
C.
Clementi
, “
Machine learning of coarse-grained molecular dynamics force fields
,”
ACS Cent. Sci.
5
,
755
767
(
2019
).
41.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
42.
N.
Artrith
,
A.
Urban
, and
G.
Ceder
, “
Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
,”
Phys. Rev. B
96
,
014112
(
2017
).
43.
R.
Batra
,
H. D.
Tran
,
C.
Kim
,
J.
Chapman
,
L.
Chen
,
A.
Chandrasekaran
, and
R.
Ramprasad
, “
General atomic neighborhood fingerprint for machine learning-based methods
,”
J. Phys. Chem. C
123
,
15859
15866
(
2019
).
44.
A.
Chandrasekaran
,
D.
Kamal
,
R.
Batra
,
C.
Kim
,
L.
Chen
, and
R.
Ramprasad
, “
Solving the electronic structure problem with machine learning
,”
npj Comput. Mater.
5
,
22
(
2019
).
45.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
46.
R.
Drautz
, “
Atomic cluster expansion for accurate and transferable interatomic potentials
,”
Phys. Rev. B
99
,
014104
(
2019
).
47.
B.
Monserrat
,
J. G.
Brandenburg
,
E. A.
Engel
, and
B.
Cheng
, “
Liquid water contains the building blocks of diverse ice phases
,”
Nat. Commun.
11
,
5757
(
2020
).
48.
A.
Offei-Danso
,
A.
Hassanali
, and
A.
Rodriguez
, “
High-dimensional fluctuations in liquid water: Combining chemical intuition with unsupervised learning
,”
J. Chem. Theory Comput.
18
,
3136
3150
(
2022
).
49.
S.
De
,
A. P.
Bartók
,
G.
Csányi
, and
M.
Ceriotti
, “
Comparing molecules and solids across structural and alchemical space
,”
Phys. Chem. Chem. Phys.
18
,
13754
13769
(
2016
).
50.
A.
Reinhardt
,
C. J.
Pickard
, and
B.
Cheng
, “
Predicting the phase diagram of titanium dioxide with random search and pattern recognition
,”
Phys. Chem. Chem. Phys.
22
,
12697
12705
(
2020
).
51.
P.
Gasparotto
,
D.
Bochicchio
,
M.
Ceriotti
, and
G. M.
Pavan
, “
Identifying and tracking defects in dynamic supramolecular polymers
,”
J. Phys. Chem. B
124
,
589
599
(
2019
).
52.
A.
Cardellini
,
M.
Crippa
,
C.
Lionello
,
S. P.
Afrose
,
D.
Das
, and
G. M.
Pavan
, “
Unsupervised data-driven reconstruction of molecular motifs in simple to complex dynamic micelles
,”
J. Phys. Chem. B
127
,
2595
2608
(
2023
).
53.
R.
Capelli
,
A.
Gardin
,
C.
Empereur-Mot
,
G.
Doni
, and
G. M.
Pavan
, “
A data-driven dimensionality reduction approach to compare and classify lipid force fields
,”
J. Phys. Chem. B
125
,
7785
7796
(
2021
).
54.
C.
Lionello
,
C.
Perego
,
A.
Gardin
,
R.
Klajn
, and
G. M.
Pavan
, “
Supramolecular semiconductivity through emerging ionic gates in ion–nanoparticle superlattices
,”
ACS Nano
17
,
275
287
(
2023
).
55.
M.
Cioni
,
D.
Polino
,
D.
Rapetti
,
L.
Pesce
,
M.
Delle Piane
, and
G. M.
Pavan
, “
Innate dynamics and identity crisis of a metal surface unveiled by machine learning of atomic environments
,”
J. Chem. Phys.
158
,
124701
(
2023
).
56.
D.
Rapetti
,
M.
Delle Piane
,
M.
Cioni
,
D.
Polino
,
R.
Ferrando
, and
G. M.
Pavan
, “
Machine learning of atomic dynamics and statistical surface identities in gold nanoparticles
,” chemRxiv:2022-7wfm9-v2 (
2022
).
57.
A.
Gardin
,
C.
Perego
,
G.
Doni
, and
G. M.
Pavan
, “
Classifying soft self-assembled materials via unsupervised machine learning of defects
,”
Commun. Chem.
5
,
82
(
2022
).
58.
T.
Bian
,
A.
Gardin
,
J.
Gemen
,
L.
Houben
,
C.
Perego
,
B.
Lee
,
N.
Elad
,
Z.
Chu
,
G. M.
Pavan
, and
R.
Klajn
, “
Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures
,”
Nat. Chem.
13
,
940
949
(
2021
).
59.
E.
Facco
,
M.
d’Errico
,
A.
Rodriguez
, and
A.
Laio
, “
Estimating the intrinsic dimension of datasets by a minimal neighborhood information
,”
Sci. Rep.
7
,
12140
(
2017
).
60.
J. B.
Tenenbaum
,
V. d.
Silva
, and
J. C.
Langford
, “
A global geometric framework for nonlinear dimensionality reduction
,”
Science
290
,
2319
2323
(
2000
).
61.
R. R.
Coifman
and
S.
Lafon
, “
Diffusion maps
,”
Appl. Comput. Harmonic Anal.
21
,
5
30
(
2006
).
62.
B.
Schölkopf
,
A.
Smola
, and
K.-R.
Müller
, “
Nonlinear component analysis as a kernel eigenvalue problem
,”
Neural Comput.
10
,
1299
1319
(
1998
).
63.
C. R.
Schwantes
and
V. S.
Pande
, “
Modeling molecular kinetics with tica and the kernel trick
,”
J. Chem. Theory Comput.
11
,
600
608
(
2015
).
64.
S.-T.
Tsai
,
Z.
Smith
, and
P.
Tiwary
, “
SGOOP-d: Estimating kinetic distances and reaction coordinate dimensionality for rare event systems from biased/unbiased simulations
,”
J. Chem. Theory Comput.
17
,
6757
6765
(
2021
).
65.
M.
Crippa
,
A.
Cardellini
,
C.
Caruso
, and
G. M.
Pavan
, “
Detecting dynamic domains and local fluctuations in complex molecular systems via timelapse neighbors shuffling
,” arXiv:2212.12694 (
2022
).
66.
B. A.
Helfrecht
,
P.
Gasparotto
,
F.
Giberti
, and
M.
Ceriotti
, “
Atomic motif recognition in (bio) polymers: Benchmarks from the protein data bank
,”
Front. Mol. Biosci.
6
,
24
(
2019
).
67.
M. J.
Willatt
,
F.
Musil
, and
M.
Ceriotti
, “
Atom-density representations for machine learning
,”
J. Chem. Phys.
150
,
154110
(
2019
).
69.
K.
Pearson
, “
LIII. On lines and planes of closest fit to systems of points in space
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
2
,
559
572
(
1901
).
70.
H.
Hotelling
, “
Analysis of a complex of statistical variables into principal components
,”
J. Educ. Psychol.
24
,
417
(
1933
).
71.
C.
Zeni
,
A.
Anelli
,
A.
Glielmo
, and
K.
Rossi
, “
Exploring the robust extrapolation of high-dimensional machine learning potentials
,”
Phys. Rev. B
105
,
165141
(
2022
).
72.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
et al, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
73.
W. H.
Press
and
S. A.
Teukolsky
, “
Savitzky-golay smoothing filters
,”
Comput. Phys.
4
,
669
672
(
1990
).
74.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
, and
P.
van Mulbregt
, and
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
75.
S.
Lloyd
, “
Least squares quantization in PCM
,”
IEEE Trans. Inf. Theory
28
,
129
137
(
1982
).
76.
J. B.
MacQueen
, “
Some methods for classification and analysis of multivariate observations
,” in
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
(
University of California Press, Berkeley
,
1997
), Vol.
1
, pp,
281
297
.
77.
A. J. C.
Ladd
and
L. V.
Woodcock
, “
Triple-point coexistence properties of the Lennard-Jones system
,”
Chem. Phys. Lett.
51
,
155
159
(
1977
).
78.
A. J. C.
Ladd
and
L. V.
Woodcock
, “
Interfacial and co-existence properties of the Lennard-Jones system at the triple point
,”
Mol. Phys.
36
,
611
619
(
1978
).
79.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
80.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/ICE
,”
J. Chem. Phys.
122
,
234511
(
2005
).
81.
R.
García Fernández
,
J. L. F.
Abascal
, and
C.
Vega
, “
The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface
,”
J. Chem. Phys.
124
,
144506
(
2006
).
82.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
, “
GenIce: Hydrogen-disordered ice generator
,”
J. Comput. Chem.
39
,
61
64
(
2018
).
83.
M.
Bernetti
and
G.
Bussi
, “
Pressure control using stochastic cell rescaling
,”
J. Chem. Phys.
153
,
114107
(
2020
).
84.
D.
Frenkel
, “
Simulations: The dark side
,”
Eur. Phys. J. Plus
128
,
10
(
2013
).
85.
R. P.
Gupta
, “
Lattice relaxation at a metal surface
,”
Phys. Rev. B
23
,
6265
(
1981
).
86.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
et al, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
87.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
88.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
De Vries
, “
The martini force field: Coarse grained model for biomolecular simulations
,”
J. Phys. Chem. B
111
,
7812
7824
(
2007
).
89.
T.
Bryk
and
A. D. J.
Haymet
, “
Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces
,”
J. Chem. Phys.
117
,
10258
10268
(
2002
).
90.
C.
Moritz
,
P. L.
Geissler
, and
C.
Dellago
, “
The microscopic mechanism of bulk melting of ice
,”
J. Chem. Phys.
155
,
124501
(
2021
).
91.
L.
Molgedey
and
H. G.
Schuster
, “
Separation of a mixture of independent signals using time delayed correlations
,”
Phys. Rev. Lett.
72
,
3634
(
1994
).
92.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
, “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
,
015102
(
2013
).
93.
T. D.
Daff
,
I.
Saadoune
,
I.
Lisiecki
, and
N. H.
de Leeuw
, “
Computer simulations of the effect of atomic structure and coordination on the stabilities and melting behaviour of copper surfaces and nano-particles
,”
Surf. Sci.
603
,
445
454
(
2009
).
94.
T.
Xie
,
A.
France-Lanord
,
Y.
Wang
,
Y.
Shao-Horn
, and
J. C.
Grossman
, “
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
,”
Nat. Commun.
10
,
2667
(
2019
).
95.
R.
Capelli
,
F.
Muniz-Miranda
, and
G. M.
Pavan
, “
Ephemeral ice-like local environments in classical rigid models of liquid water
,”
J. Chem. Phys.
156
,
214503
(
2022
).

Supplementary Material

You do not currently have access to this content.