We present a hybrid, multi-method, computational scheme for protein/ligand systems well suited to be used on modern and forthcoming massively parallel computing systems. The scheme relies on a multi-scale polarizable molecular modeling, approach to perform molecular dynamics simulations, and on an efficient Density Functional Theory (DFT) linear scaling method to post-process simulation snapshots. We use this scheme to investigate recent α-ketoamide inhibitors targeting the main protease of the SARS-CoV-2 virus. We assessed the reliability and the coherence of the hybrid scheme, in particular, by checking the ability of MM and DFT to reproduce results from high-end ab initio computations regarding such inhibitors. The DFT approach enables an a posteriori fragmentation of the system and an investigation into the strength of interaction among identified fragment pairs. We show the necessity of accounting for a large set of plausible protease/inhibitor conformations to generate reliable interaction data. Finally, we point out ways to further improve α-ketoamide inhibitors to more strongly interact with particular protease domains neighboring the active site.

1.
W.
Dawson
,
A.
Degomme
,
M.
Stella
,
T.
Nakajima
,
L. E.
Ratcliff
, and
L.
Genovese
, “
Density functional theory calculations of large systems: Interplay between fragments, observables, and computational complexity
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1574
(
2022
).
2.
L. E.
Ratcliff
,
S.
Mohr
,
G.
Huhs
,
T.
Deutsch
,
M.
Masella
, and
L.
Genovese
, “
Challenges in large scale quantum mechanical calculations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1290
(
2017
).
3.
K.
Świderek
and
V.
Moliner
, “
Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 Mpro by QM/MM computational methods
,”
Chem. Sci.
11
,
10626
10630
(
2020
).
4.
K.
Arafet
,
N.
Serrano-Aparicio
,
A.
Lodola
,
A. J.
Mulholland
,
F. V.
González
,
K.
Świderek
, and
V.
Moliner
, “
Mechanism of inhibition of SARS-CoV-2 Mpro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity
,”
Chem. Sci.
12
,
1433
1444
(
2021
).
5.
E.
Awoonor-Williams
and
A. A.-A. A.
Abu-Saleh
, “
Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease
,”
Phys. Chem. Chem. Phys.
23
,
6746
6757
(
2021
).
6.
C. A.
Ramos-Guzmán
,
J. J.
Ruiz-Pernía
, and
I.
Tuñón
, “
Multiscale simulations of SARS-CoV-2 3CL protease inhibition with aldehyde derivatives. Role of protein and inhibitor conformational changes in the reaction mechanism
,”
ACS Catal.
11
,
4157
4168
(
2021
).
7.
C. A.
Ramos-Guzmán
,
J. J.
Ruiz-Pernía
, and
I.
Tuñón
, “
A microscopic description of SARS-CoV-2 main protease inhibition with Michael acceptors. Strategies for improving inhibitor design
,”
Chem. Sci.
12
,
3489
3496
(
2021
).
8.
H. S.
Fernandes
,
S. F.
Sousa
, and
N. M. F. S. A.
Cerqueira
, “
New insights into the catalytic mechanism of the SARS-CoV-2 main protease: An ONIOM QM/MM approach
,”
Mol. Diversity
26
,
1373
1381
(
2022
).
9.
J.
Nochebuena
and
G. A.
Cisneros
, “
Polarizable MD and QM/MM investigation of acrylamide-based leads to target the main protease of SARS-CoV-2
,”
J. Chem. Phys.
157
,
185101
(
2022
).
10.
K.
Gao
,
R.
Wang
,
J.
Chen
,
L.
Cheng
,
J.
Frishcosy
,
Y.
Huzumi
,
Y.
Qiu
,
T.
Schluckbier
,
X.
Wei
, and
G.-W.
Wei
, “
Methodology-centered review of molecular modeling, simulation, and prediction of SARS-CoV-2
,”
Chem. Rev.
122
,
11287
11368
(
2022
).
11.
S.
Martí
,
K.
Arafet
,
A.
Lodola
,
A. J.
Mulholland
,
K.
Świderek
, and
V.
Moliner
, “
Impact of warhead modulations on the covalent inhibition of SARS-CoV-2 Mpro explored by QM/MM simulations
,”
ACS Catal.
12
,
698
708
(
2022
).
12.
N.
Ye
,
Z.
Yang
, and
Y.
Liu
, “
Applications of density functional theory in COVID-19 drug modeling
,”
Drug Discovery Today
27
,
1411
1419
(
2022
).
13.
H.
Sharma
,
B.
Raju
,
G.
Narendra
,
M.
Motiwale
,
B.
Sharma
,
H.
Verma
, and
O.
Silakari
, “
QM/MM studies on enzyme catalysis and insight into designing of new inhibitors by ONIOM approach: Recent update
,”
ChemistrySelect
8
,
e202203319
(
2023
).
14.
G.
Giudetti
,
I.
Polyakov
,
B. L.
Grigorenko
,
S.
Faraji
,
A. V.
Nemukhin
, and
A. I.
Krylov
, “
How reproducible are QM/MM simulations? Lessons from computational studies of the covalent inhibition of the SARS-CoV-2 main protease by carmofur
,”
J. Chem. Theory Comput.
18
,
5056
5067
(
2022
).
15.
S.
Mohr
,
M.
Masella
,
L. E.
Ratcliff
, and
L.
Genovese
, “
Complexity reduction in large quantum systems: Fragment identification and population analysis via a local optimized minimal basis
,”
J. Chem. Theory Comput.
13
,
4079
4088
(
2017
).
16.
W.
Dawson
,
S.
Mohr
,
L. E.
Ratcliff
,
T.
Nakajima
, and
L.
Genovese
, “
Complexity reduction in density functional theory calculations of large systems: System partitioning and fragment embedding
,”
J. Chem. Theory Comput.
16
,
2952
(
2020
).
17.
D. G.
Fedorov
and
K.
Kitaura
, “
Pair interaction energy decomposition analysis
,”
J. Comput. Chem.
28
,
222
237
(
2007
).
18.
M. J. S.
Phipps
,
T.
Fox
,
C. S.
Tautermann
, and
C.-K.
Skylaris
, “
Intuitive density functional theory-based energy decomposition analysis for protein–ligand interactions
,”
J. Chem. Theory Comput.
13
,
1837
1850
(
2017
).
19.
M.
Zaccaria
,
W.
Dawson
,
V.
Cristiglio
,
M.
Reverberi
,
L. E.
Ratcliff
,
T.
Nakajima
,
L.
Genovese
, and
B.
Momeni
, “
Designing a bioremediator: Mechanistic models guide cellular and molecular specialization
,”
Curr. Opin. Biotechnol.
62
,
98
105
(
2020
).
20.
M. A.
Llanos
,
M. E.
Gantner
,
S.
Rodriguez
,
L. N.
Alberca
,
C. L.
Bellera
,
A.
Talevi
, and
L.
Gavernet
, “
Strengths and weaknesses of docking simulations in the SARS-CoV-2 era: The main protease (Mpro) case study
,”
J. Chem. Inf. Model.
61
,
3758
3770
(
2021
).
21.
E. N.
Muratov
,
R.
Amaro
,
C. H.
Andrade
,
N.
Brown
,
S.
Ekins
,
D.
Fourches
,
O.
Isayev
,
D.
Kozakov
,
J. L.
Medina-Franco
,
K. M.
Merz
,
T. I.
Oprea
,
V.
Poroikov
,
G.
Schneider
,
M. H.
Todd
,
A.
Varnek
,
D. A.
Winkler
,
A. V.
Zakharov
,
A.
Cherkasov
, and
A.
Tropsha
, “
A critical overview of computational approaches employed for COVID-19 drug discovery
,”
Chem. Soc. Rev.
50
,
9121
9151
(
2021
).
22.
R.
Hatada
,
K.
Okuwaki
,
Y.
Mochizuki
,
Y.
Handa
,
K.
Fukuzawa
,
Y.
Komeiji
,
Y.
Okiyama
, and
S.
Tanaka
, “
Fragment molecular orbital based interaction analyses on COVID-19 main protease - inhibitor N3 complex (PDB ID: 6LU7)
,”
J. Chem. Inf. Model.
60
,
3593
3602
(
2020
).
23.
S.
Banerjee
, “
An insight into the interaction between α-ketoamide-based inhibitor and coronavirus main protease: A detailed in silico study
,”
Biophys. Chem.
269
,
106510
(
2021
).
24.
K.
Fukuzawa
,
K.
Kato
,
C.
Watanabe
,
Y.
Kawashima
,
Y.
Handa
,
A.
Yamamoto
,
K.
Watanabe
,
T.
Ohyama
,
K.
Kamisaka
,
D.
Takaya
, and
T.
Honma
, “
Special features of COVID-19 in the FMODB: Fragment molecular orbital calculations and interaction energy analysis of SARS-CoV-2-related proteins
,”
J. Chem. Inf. Model.
61
,
4594
4612
(
2021
).
25.
T.
Ishikawa
,
H.
Ozono
,
K.
Akisawa
,
R.
Hatada
,
K.
Okuwaki
, and
Y.
Mochizuki
, “
Interaction analysis on the SARS-CoV-2 spike protein receptor binding domain using visualization of the interfacial electrostatic complementarity
,”
J. Chem. Phys. Lett.
12
,
11267
11272
(
2021
).
26.
S.
Hwang
,
S.-H.
Baek
, and
D.
Park
, “
Interaction analysis of the spike protein of delta and omicron variants of SARS-CoV-2 with hACE2 and eight monoclonal antibodies using the fragment molecular orbital method
,”
J. Chem. Inf. Model.
62
,
1771
1782
(
2022
).
27.
K.
Watanabe
,
C.
Watanabe
,
T.
Honma
,
Y.-S.
Tian
,
Y.
Kawashima
,
N.
Kawashita
,
T.
Takagi
, and
K.
Fukuzawa
, “
Intermolecular interaction analyses on SARS-CoV-2 spike protein receptor binding domain and human angiotensin-converting enzyme 2 receptor-blocking antibody/peptide using fragment molecular orbital calculation
,”
J. Chem. Phys. Lett.
12
,
4059
4066
(
2021
).
28.
C.
Watanabe
,
Y.
Okiyama
,
S.
Tanaka
,
K.
Fukuzawa
, and
T.
Honma
, “
Molecular recognition of SARS-CoV-2 spike glycoprotein: Quantum chemical hot spot and epitope analyses
,”
Chem. Sci.
12
,
4722
4739
(
2021
).
29.
S. J.
Fox
,
C.
Pittock
,
C. S.
Tautermann
,
T.
Fox
,
C.
Christ
,
N. O. J.
Malcolm
,
J. W.
Essex
, and
C.-K.
Skylaris
, “
Free energies of binding from large-scale first-principles quantum mechanical calculations: Application to ligand hydration energies
,”
J. Phys. Chem. B
117
,
9478
9485
(
2013
).
30.
S.
Tokutomi
,
K.
Shimamura
,
K.
Fukuzawa
, and
S.
Tanaka
, “
Machine learning prediction of inter-fragment interaction energies between ligand and amino-acid residues on the fragment molecular orbital calculations for Janus kinase – inhibitor complex
,”
Chem. Phys. Lett.
757
,
137883
(
2020
).
31.
S.
Tanaka
,
S.
Tokutomi
,
R.
Hatada
,
K.
Okuwaki
,
K.
Akisawa
,
K.
Fukuzawa
,
Y.
Komeiji
,
Y.
Okiyama
, and
Y.
Mochizuki
, “
Dynamic cooperativity of ligand–residue interactions evaluated with the fragment molecular orbital method
,”
J. Phys. Chem. B
125
,
6501
6512
(
2021
).
32.
K.
Takaba
,
C.
Watanabe
,
A.
Tokuhisa
,
Y.
Akinaga
,
B.
Ma
,
R.
Kanada
,
M.
Araki
,
Y.
Okuno
,
Y.
Kawashima
,
H.
Moriwaki
,
N.
Kawashita
,
T.
Honma
,
K.
Fukuzawa
, and
S.
Tanaka
, “
Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy
,”
J. Comput. Chem.
43
,
1362
(
2022
).
33.
T.
Huynh
,
H.
Wang
, and
B.
Luan
, “
In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2’s main protease
,”
J. Phys. Chem. Lett.
11
,
4413
4420
(
2020
).
34.
S. A.
Khan
,
K.
Zia
,
S.
Ashraf
,
R.
Uddin
, and
Z.
Ul-Haq
, “
Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach
,”
J. Biomol. Struct. Dyn.
39
,
2607
(
2020
).
35.
D.
Gentile
,
V.
Patamia
,
A.
Scala
,
M. T.
Sciortino
,
A.
Piperno
, and
A.
Rescifina
, “
Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study
,”
Mar. Drugs
18
,
225
(
2020
).
36.
S.
Kumar
,
P. P.
Sharma
,
U.
Shankar
,
D.
Kumar
,
S. K.
Joshi
,
L.
Pena
,
R.
Durvasula
,
A.
Kumar
,
P.
Kempaiah
,
Poonam
, and
B.
Rathi
, “
Discovery of new hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: Molecular docking, molecular dynamics simulation, and structure-activity relationship studies
,”
J. Chem. Inf. Model.
60
,
5754
5770
(
2020
).
37.
D. E. Shaw Research
, Molecular Dynamics Simulations Related to SARS-CoV-2, D. E. Shaw Research Technical Data,
2020
; http://www.deshawresearch.com/resources_sarscov2.html.
38.
J. A.
Lemkul
and
A. D.
MacKerell
, “
Polarizable force field for DNA based on the classical Drude oscillator: I. Refinement using quantum mechanical base stacking and conformational energetics
,”
J. Chem. Theory Comput.
13
,
2053
2071
(
2017
).
39.
V. S.
Inakollu
,
D. P.
Geerke
,
C. N.
Rowley
, and
H.
Yu
, “
Polarisable force fields: What do they add in biomolecular simulations?
,”
Curr. Opin. Struct. Biol.
61
,
182
190
(
2020
).
40.
A. N.
Singh
and
A.
Yethiraj
, “
Driving force for the complexation of charged polypeptides
,”
J. Phys. Chem. B
124
,
1285
1292
(
2020
).
41.
M.
Masella
,
A.
Crudu
, and
F.
Léonforté
, “
Hybrid polarizable simulations of a conventional hydrophobic polyelectrolyte. Toward a theoretical tool for green science innovation
,”
J. Chem. Phys.
155
,
114903
(
2021
).
42.
M.
Masella
and
P.
Cuniasse
, “
A many-body model to study proteins. I. Applications to MLnm+ complexes, Mm+ = Li+, Na+, K+, Mg2+, Ca2+, and Zn2+, L = H2O, CH3OH, HCONH2, n = 1–6, and to small hydrogen bonded systems
,”
J. Chem. Phys.
119
,
1866
1873
(
2003
).
43.
M.
Masella
,
D.
Borgis
, and
P.
Cuniasse
, “
Combining a polarizable force-field and a coarse-grained polarizable solvent model: Application to long dynamics simulations of bovine pancreatic trypsin inhibitor
,”
J. Comput. Chem.
29
,
1707
1724
(
2008
).
44.
M.
Masella
,
D.
Borgis
, and
P.
Cuniasse
, “
Combining a polarizable force-field and a coarse-grained polarizable solvent model. II. Accounting for hydrophobic effects
,”
J. Comput. Chem.
32
,
2664
2678
(
2011
).
45.
L. E.
Ratcliff
,
W.
Dawson
,
G.
Fisicaro
,
D.
Caliste
,
S.
Mohr
,
A.
Degomme
,
B.
Videau
,
V.
Cristiglio
,
M.
Stella
,
M.
D’Alessandro
,
S.
Goedecker
,
T.
Nakajima
,
T.
Deutsch
, and
L.
Genovese
, “
Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations
,”
J. Chem. Phys.
152
,
194110
(
2020
).
46.
L.
Genovese
,
A.
Neelov
,
S.
Goedecker
,
T.
Deutsch
,
S. A.
Ghasemi
,
A.
Willand
,
D.
Caliste
,
O.
Zilberberg
,
M.
Rayson
,
A.
Bergman
, and
R.
Schneider
, “
Daubechies wavelets as a basis set for density functional pseudopotential calculations
,”
J. Chem. Phys.
129
,
014109
(
2008
).
47.
M.
Robello
,
E.
Barresi
,
E.
Baglini
,
S.
Salerno
,
S.
Taliani
, and
F. D.
Settimo
, “
The alpha keto amide moiety as a privileged motif in medicinal chemistry: Current insights and emerging opportunities
,”
J. Med. Chem.
64
,
3508
3545
(
2021
).
48.
L.
Zhang
,
D.
Lin
,
Y.
Kusov
,
Y.
Nian
,
Q.
Ma
,
J.
Wang
,
A.
von Brunn
,
P.
Leyssen
,
K.
Lanko
,
J.
Neyts
,
A.
de Wilde
,
E. J.
Snijder
,
H.
Liu
, and
R.
Hilgenfeld
, “
α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment
,”
J. Med. Chem.
63
,
4562
4578
(
2020
).
49.
T.
Pillaiyar
,
M.
Manickam
,
V.
Namasivayam
,
Y.
Hayashi
, and
S.-H.
Jung
, “
An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy
,”
J. Med. Chem.
59
,
6595
6628
(
2016
).
50.
A.
Tichá
,
S.
Stanchev
,
K. R.
Vinothkumar
,
D. C.
Mikles
,
P.
Pachl
,
J.
Began
,
J.
Škerle
,
K.
Švehlová
,
M. T. N.
Nguyen
,
S. H. L.
Verhelst
,
D. A.
Johnson
,
D. A.
Bachovchin
,
M.
Lepšík
,
P.
Majer
, and
K.
Strisovsky
, “
General and modular strategy for designing potent, selective, and pharmacologically compliant inhibitors of rhomboid proteases
,”
Cell Chem. Biol.
24
,
1523
1536.e4
(
2017
).
51.
L.
Zhang
,
D.
Lin
,
X.
Sun
,
U.
Curth
,
C.
Drosten
,
L.
Sauerhering
,
S.
Becker
,
K.
Rox
, and
R.
Hilgenfeld
, “
Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors
,”
Science
368
,
409
412
(
2020
).
52.
Z.
Jin
,
X.
Du
,
Y.
Xu
,
Y.
Deng
,
M.
Liu
,
Y.
Zhao
,
B.
Zhang
,
X.
Li
,
L.
Zhang
,
C.
Peng
,
Y.
Duan
,
J.
Yu
,
L.
Wang
,
K.
Yang
,
F.
Liu
,
R.
Jiang
,
X.
Yang
,
T.
You
,
X.
Liu
,
X.
Yang
,
F.
Bai
,
H.
Liu
,
X.
Liu
,
L. W.
Guddat
,
W.
Xu
,
G.
Xiao
,
C.
Qin
,
Z.
Shi
,
H.
Jiang
,
Z.
Rao
, and
H.
Yang
, “
Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors
,”
Nature
582
,
289
293
(
2020
).
53.
Z.
Jin
,
Y.
Zhao
,
Y.
Sun
,
B.
Zhang
,
H.
Wang
,
Y.
Wu
,
Y.
Zhu
,
C.
Zhu
,
T.
Hu
,
X.
Du
,
Y.
Duan
,
J.
Yu
,
X.
Yang
,
X.
Yang
,
K.
Yang
,
X.
Liu
,
L. W.
Guddat
,
G.
Xiao
,
L.
Zhang
,
H.
Yang
, and
Z.
Rao
, “
Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur
,”
Nat. Struct. Mol. Biol.
27
,
529
532
(
2020
).
54.
W.
Dai
,
B.
Zhang
,
X.-M.
Jiang
,
H.
Su
,
J.
Li
,
Y.
Zhao
,
X.
Xie
,
Z.
Jin
,
J.
Peng
,
F.
Liu
,
C.
Li
,
Y.
Li
,
F.
Bai
,
H.
Wang
,
X.
Cheng
,
X.
Cen
,
S.
Hu
,
X.
Yang
,
J.
Wang
,
X.
Liu
,
G.
Xiao
,
H.
Jiang
,
Z.
Rao
,
L.-K.
Zhang
,
Y.
Xu
,
H.
Yang
, and
H.
Liu
, “
Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease
,”
Science
368
,
1331
1335
(
2020
).
55.
S.
VanPatten
,
M.
He
,
A.
Altiti
,
K. F.
Cheng
,
M. H.
Ghanem
, and
Y.
Al-Abed
, “
Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics
,”
Future Med. Chem.
12
,
1647
1656
(
2020
).
56.
L.
Zhang
,
D.
Lin
, and
R.
Hilgenfeld
, “
Structure of human coronavirus NL63 main protease in complex with the alpha-ketoamide tert-butyl ((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)b- utan-2-yl)carbamate (tert-butyl -GlnLactam-CO-CO-NH-benzyl)
,” http://doi.org/10.2210/pdb6fv2/pdb (
2018
).
57.
C.
Houriez
,
V.
Vallet
,
F.
Réal
,
M.
Meot-Ner (Mautner)
, and
M.
Masella
, “
Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts
,”
J. Chem. Phys.
147
,
161720
(
2017
).
58.
T.
Gallagher
,
P.
Alexander
,
P.
Bryan
, and
G. L.
Gilliland
, “
Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR
,”
Biochemistry
33
,
4721
4729
(
1994
).
59.
H. T. H.
Chan
,
M. A.
Moesser
,
R. K.
Walters
,
T. R.
Malla
,
R. M.
Twidale
,
T.
John
,
H. M.
Deeks
,
T.
Johnston-Wood
,
V.
Mikhailov
,
R. B.
Sessions
,
W.
Dawson
,
E.
Salah
,
P.
Lukacik
,
C.
Strain-Damerell
,
C. D.
Owen
,
T.
Nakajima
,
K.
Świderek
,
A.
Lodola
,
V.
Moliner
,
D. R.
Glowacki
,
J.
Spencer
,
M. A.
Walsh
,
C. J.
Schofield
,
L.
Genovese
,
D. K.
Shoemark
,
A. J.
Mulholland
,
F.
Duarte
, and
G. M.
Morris
, “
Discovery of SARS-CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding
,”
Chem. Sci.
12
,
13686
13703
(
2021
).
60.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
61.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J.
Klepeis
,
R.
Dror
, and
D.
Shaw
, “
Improved side-chain torsion potentials for the amber ff99SB protein force field
,”
Proteins
78
,
1950
1958
(
2010
).
62.
See http://biodev.cea.fr/polaris/ for information about the POLARIS code.
63.
M.
Masella
, “
The multiple time step r-RESPA procedure and polarizable potentials based on induced dipole moments
,”
Mol. Phys.
104
,
415
428
(
2006
).
64.
E.
Cancès
,
F.
Legoll
, and
G.
Stoltz
, “
Theoretical and numerical comparison of some sampling methods for molecular dynamics
,”
ESAIM: M2AN
41
,
351
389
(
2007
).
65.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
, “
Explicit reversible integrators for extended systems dynamics
,”
Mol. Phys.
87
,
1117
1157
(
1996
).
66.
K.
Anand
,
G. J.
Palm
,
J. R.
Mesters
,
S. G.
Siddell
,
J.
Ziebuhr
, and
R.
Hilgenfeld
, “
Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain
,”
EMBO J.
21
,
3213
3224
(
2002
).
67.
D.
Suárez
and
N.
Díaz
, “
SARS-CoV-2 main protease: A molecular dynamics study
,”
J. Chem. Inf. Model.
60
,
5815
5831
(
2020
).
68.
M.
Bzówka
,
K.
Mitusińska
,
A.
Raczyńska
,
A.
Samol
,
J. A.
Tuszyński
, and
A.
Góra
, “
Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design
,”
Int. J. Mol. Sci.
21
,
3099
(
2020
).
69.
See http://www.bigdft.org for information about the BigDFT code.
70.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
71.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
72.
A.
Willand
,
Y. O.
Kvashnin
,
L.
Genovese
,
A.
Vázquez-Mayagoitia
,
A. K.
Deb
,
A.
Sadeghi
,
T.
Deutsch
, and
S.
Goedecker
, “
Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations
,”
J. Chem. Phys.
138
,
104109
(
2013
).
73.
C.-K.
Skylaris
,
P. D.
Haynes
,
A. A.
Mostofi
, and
M. C.
Payne
, “
Introducing ONETEP: Linear-scaling density functional simulations on parallel computers
,”
J. Chem. Phys.
122
,
084119
(
2005
).
74.
D. R.
Bowler
and
T.
Miyazaki
, “
Calculations for millions of atoms with density functional theory: Linear scaling shows its potential
,”
J. Phys.: Condens. Matter
22
,
074207
(
2010
).
75.
M.
Zaccaria
,
L.
Genovese
,
W.
Dawson
,
V.
Cristiglio
,
T.
Nakajima
,
W.
Johnson
,
M.
Farzan
, and
B.
Momeni
, “
Probing the mutational landscape of the SARS-CoV-2 spike protein via quantum mechanical modeling of crystallographic structures
,”
PNAS Nexus
1
,
pgac180
(
2022
).
76.
M.
Frisch
,
G.
Trucks
,
H.
Schlegel
,
G.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
et al,
Gaussian 09, Revision D.01
,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
77.
M.
Schwilk
,
Q.
Ma
,
C.
Köppl
, and
H.-J.
Werner
, “
Scalable electron correlation methods. 3. Efficient and accurate parallel local coupled cluster with pair natural orbitals (PNO-LCCSD)
,”
J. Chem. Theory Comput.
13
,
3650
3675
(
2017
).
78.
Q.
Ma
and
H.-J.
Werner
, “
Scalable electron correlation methods. 5. Parallel perturbative triples correction for explicitly correlated local coupled cluster with pair natural orbitals
,”
J. Chem. Theory Comput.
14
,
198
215
(
2018
).
79.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
S. J.
Bennie
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
S. J. R.
Lee
,
Y.
Liu
,
A. W.
Lloyd
,
Q.
Ma
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
T. F.
Miller
III
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, and
M.
Welborn
,
molpro, version 2019.2, a package of ab initio programs
,
2019
, see https://www.molpro.net.
80.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
81.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
82.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
,
3175
3183
(
2002
).
83.
L.
Zhang
,
D.
Lin
, and
R.
Hilgenfeld
, “
Crystal structure of the complex resulting from the reaction between the SARS-CoV main protease and tert-butyl (1-((S)-3-cyclohexyl-1-(((S)-4-(cyclopropylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3-yl)carbamate
,” https://doi.org/10.2210/pdb6Y2F/pdb (
2020
).
84.
L.
Zhang
,
D.
Lin
,
X.
Sun
, and
R.
Hilgenfeld
, “
Crystal structure (orthorhombic form) of the complex resulting from the reaction between SARS-CoV-2 (2019-nCoV) main protease and tert-butyl (1-((S)-1-(((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3-yl)carbamate (alpha-ketoamide 13b)
,” https://doi.org/10.2210/pdb6Y2G/pdb (
2020
).
85.
D.
Mondal
and
A.
Warshel
, “
Exploring the mechanism of covalent inhibition: Simulating the binding free energy of α-ketoamide inhibitors of the main protease of SARS-CoV-2
,”
Biochemistry
59
,
4601
4608
(
2020
).
86.
D. W.
Kneller
,
G.
Phillips
,
K. L.
Weiss
,
S.
Pant
,
Q.
Zhang
,
H. M.
O’Neill
,
L.
Coates
, and
A.
Kovalevsky
, “
Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography
,”
J. Mol. Bio.
295
,
17365
17373
(
2020
).
87.
J.
Ono
,
U.
Koshimizu
,
Y.
Fukunishi
, and
H.
Nakai
, “
Multiple protonation states in ligand-free SARS-CoV-2 main protease revealed by large-scale quantum molecular dynamics simulations
,”
Chem. Phys. Lett.
794
,
139489
(
2022
).
88.
D. W.
Kneller
,
H.
Li
,
S.
Galanie
,
G.
Phillips
,
A.
Labbé
,
K. L.
Weiss
,
Q.
Zhang
,
M. A.
Arnould
,
A.
Clyde
,
H.
Ma
,
A.
Ramanathan
,
C. B.
Jonsson
,
M. S.
Head
,
L.
Coates
,
J. M.
Louis
,
P. V.
Bonnesen
, and
A.
Kovalevsky
, “
Structural, electronic, and electrostatic determinants for inhibitor binding to subsites S1 and S2 in SARS-CoV-2 main protease
,”
J. Med. Chem.
64
,
17366
17383
(
2021
).
89.
D. W.
Kneller
,
G.
Phillips
,
K. L.
Weiss
,
Q.
Zhang
,
L.
Coates
, and
A.
Kovalevsky
, “
Direct observation of protonation state modulation in SARS-CoV-2 main protease upon inhibitor binding with neutron crystallography
,”
J. Med. Chem.
64
,
4991
5000
(
2021
).
90.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures
,”
J. Chem. Theory Comput.
7
,
2427
2438
(
2011
).
91.
A. A.
Rashin
,
A. H. L.
Rashin
, and
R. L.
Jernigan
, “
Protein flexibility: Coordinate uncertainties and interpretation of structural differences
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
65
,
1140
1161
(
2009
).
92.
N. G.
Ramos
,
G. F.
Sarmanho
,
F.
de Sá Ribeiro
,
V.
de Souza
, and
L. M. T.
Lima
, “
The reproducible normality of the crystallographic B-factor
,”
Anal. Biochem.
645
,
114594
(
2022
).
93.
A. A.-A. A.
Abu-Saleh
,
I. E.
Awad
,
A.
Yadav
, and
R. A.
Poirier
, “
Discovery of potent inhibitors for SARS-CoV-2’s main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations
,”
Phys. Chem. Chem. Phys.
22
,
23099
23106
(
2020
).
94.
N.
Díaz
and
D.
Suárez
, “
Influence of charge configuration on substrate binding to SARS-CoV-2 main protease
,”
Chem. Commun.
57
,
5314
5317
(
2021
).
95.
A.
Pavlova
,
D. L.
Lynch
,
I.
Daidone
,
L.
Zanetti-Polzi
,
M. D.
Smith
,
C.
Chipot
,
D. W.
Kneller
,
A.
Kovalevsky
,
L.
Coates
,
A. A.
Golosov
,
C. J.
Dickson
,
C.
Velez-Vega
,
J. S.
Duca
,
J. V.
Vermaas
,
Y. T.
Pang
,
A.
Acharya
,
J. M.
Parks
,
J. C.
Smith
, and
J. C.
Gumbart
, “
Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease
,”
Chem. Sci.
12
,
1513
1527
(
2021
).
96.
L.
Zanetti-Polzi
,
M. D.
Smith
,
C.
Chipot
,
J. C.
Gumbart
,
D. L.
Lynch
,
A.
Pavlova
,
J. C.
Smith
, and
I.
Daidone
, “
Tuning proton transfer thermodynamics in SARS-CoV-2 main protease: Implications for catalysis and inhibitor design
,”
J. Chem. Phys. Lett.
12
,
4195
4202
(
2021
).
97.
A. E.
Reed
,
F.
Weinhold
,
L. A.
Curtiss
, and
D. J.
Pochatko
, “
Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3
,”
J. Chem. Phys.
84
,
5687
5705
(
1986
).
98.
C.
Houriez
,
M.
Masella
, and
N.
Ferré
, “
Structural and atoms-in-molecules analysis of hydrogen-bond network around nitroxides in liquid water
,”
J. Chem. Phys.
133
,
124508
(
2010
).
99.
Y.
Sun
,
B.
Zhao
,
Y.
Wang
,
Z.
Chen
,
H.
Zhang
,
L.
Qu
,
Y.
Zhao
, and
J.
Song
, “
Optimization of potential non-covalent inhibitors for the SARS-CoV-2 main protease inspected by a descriptor of the subpocket occupancy
,”
Phys. Chem. Chem. Phys.
24
,
29940
29951
(
2022
).
100.
P.
García-Gutiérrez
,
R. A.
Zubillaga
,
I. A.
Ibarra
,
A.
Martínez
,
R.
Vargas
, and
J.
Garza
, “
Non-conventional interactions of N3 inhibitor with the main protease of SARS-CoV and SARS-CoV-2
,”
Comput. Struct. Biotechnol. J.
19
,
4669
4675
(
2021
).

Supplementary Material

You do not currently have access to this content.