Circuit depth reduction is of critical importance for quantum chemistry simulations on current and near term quantum computers. This issue is tackled by introducing a chemically aware strategy for the unitary coupled cluster ansatz. The objective is to use the chemical description of a system to aid in the synthesis of a quantum circuit. We combine this approach with two flavors of symmetry verification for the reduction of experimental noise. These methods enable the use of Quantinuum’s System Model H1 ion trap quantum computer for a 6-qubit quantum subspace expansion calculation. We present (i) calculations to obtain methane’s optical spectra; (ii) an atmospheric gas reaction simulation involving [CH3—H—OH]. Using our chemically aware unitary coupled cluster state-preparation strategy in tandem with state of the art symmetry verification methods, we improve device yield for CH4 at 6 qubits. This is demonstrated by a 90% improvement in two-qubit gate count and a reduction in relative error to 0.2% for electronic energy calculated on System Model H1.

1.
W.
Kohn
, “
Nobel Lecture: Electronic structure of matter—wave functions and density functionals
,”
Rev. Mod. Phys.
71
,
1253
1266
(
1999
).
2.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferová
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
,
N. P. D.
Sawaya
,
S.
Sim
,
L.
Veis
, and
A.
Aspuru-Guzik
, “
Quantum chemistry in the age of quantum computing
,”
Chem. Rev.
119
(
19
),
10856
10915
(
2019
).
3.
A. D.
Becke
, “
Perspective: Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
(
18
),
18A301
(
2014
).
4.
H.
Sekino
and
R. J.
Bartlett
, “
A linear response, coupled-cluster theory for excitation energy
,”
Int. J. Quantum Chem.
26
(
S18
),
255
265
(
1984
).
5.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M.-H.
Yung
,
X.-Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O’Brien
, “
A variational eigenvalue solver on a photonic quantum processor
,”
Nat. Commun.
5
(
1
),
4213
(
2014
).
6.
A.
Kandala
,
A.
Mezzacapo
,
K.
Temme
,
M.
Takita
,
M.
Brink
,
J. M.
Chow
, and
J. M.
Gambetta
, “
Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
,”
Nature
549
(
7671
),
242
246
(
2017
).
7.
J. R.
McClean
,
M. E.
Kimchi-Schwartz
,
J.
Carter
, and
W. A.
de Jong
, “
Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states
,”
Phys. Rev. A
95
(
4
),
042308
(
2017
).
8.
J. R.
McClean
,
J.
Romero
,
R.
Babbush
, and
A.
Aspuru-Guzik
, “
The theory of variational hybrid quantum-classical algorithms
,”
New J. Phys.
18
(
2
),
023023
(
2016
).
9.
J. R.
McClean
,
S.
Boixo
,
V. N.
Smelyanskiy
,
R.
Babbush
, and
H.
Neven
, “
Barren plateaus in quantum neural network training landscapes
,”
Nat. Commun.
9
(
1
),
4812
(
2018
).
10.
I. G.
Ryabinkin
,
T.-C.
Yen
,
S. N.
Genin
, and
A. F.
Izmaylov
, “
Qubit coupled-cluster method: A systematic approach to quantum chemistry on a quantum computer
,”
J. Chem. Theory Comput.
14
,
6317
(
2018
).
11.
T.
Jones
and
S. C.
Benjamin
, “
Robust quantum compilation and circuit optimisation via energy minimisation
,”
Quantum
6
,
628
(
2022
).
12.
A.
Cowtan
,
S.
Dilkes
,
R.
Duncan
,
W.
Simmons
, and
S.
Sivarajah
, “
Phase gadget synthesis for shallow circuits
,”
Electron. Proc. Theor. Comput. Sci.
318
,
213
228
(
2020
).
13.
H. R.
Grimsley
,
S. E.
Economou
,
E.
Barnes
, and
N. J.
Mayhall
, “
An adaptive variational algorithm for exact molecular simulations on a quantum computer
,”
Nat. Commun.
10
(
1
),
3007
(
2019
).
14.
Y.
Nam
,
J.-S.
Chen
,
N. C.
Pisenti
,
K.
Wright
,
C.
Delaney
,
D.
Maslov
,
K. R.
Brown
,
S.
Allen
,
J. M.
Amini
,
J.
Apisdorf
,
K. M.
Beck
,
A.
Blinov
,
V.
Chaplin
,
M.
Chmielewski
,
C.
Collins
,
S.
Debnath
,
A. M.
Ducore
,
K. M.
Hudek
,
M.
Keesan
,
S. M.
Kreikemeier
,
J.
Mizrahi
,
P.
Solomon
,
M.
Williams
,
J. D.
Wong-Campos
,
C.
Monroe
, and
J.
Kim
, “
Ground-state energy estimation of the water molecule on a trapped ion quantum computer
,”
npj Quantum Inf.
6
,
33
(
2019
).
15.
J. S.
Kottmann
and
A.
Aspuru-Guzik
, “
Optimized low-depth quantum circuits for molecular electronic structure using a separable-pair approximation
,”
Phys. Rev. A
105
(
3
),
032449
(
2022
).
16.
V. E.
Elfving
,
M.
Millaruelo
,
J. A.
Gámez
, and
C.
Gogolin
, “
Simulating quantum chemistry in the seniority-zero space on qubit-based quantum computers
,”
Phys. Rev. A
103
(
3
),
032605
(
2021
).
17.
D. Z.
Manrique
,
I. T.
Khan
,
K.
Yamamoto
,
V.
Wichitwechkarn
, and
D. M.
Ramo
, “
Momentum-space unitary coupled cluster and translational quantum subspace expansion for periodic systems on quantum computers
,” arXiv:2008.08694 (
2020
).
18.
C.
Cao
,
J.
Hu
,
W.
Zhang
,
X.
Xu
,
D.
Chen
,
F.
Yu
,
J.
Li
,
H.
Hu
,
D.
Lv
, and
M.-H.
Yung
, “
Towards a larger molecular simulation on the quantum computer: Up to 28 qubits systems accelerated by point group symmetry
,”
Phys. Rev. A
105
,
062452
(
2021
).
19.
P. P.
Bera
,
J. S.
Francisco
, and
T. J.
Lee
, “
Design strategies to minimize the radiative efficiency of global warming molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
20
),
9049
9054
(
2010
).
20.
D. J.
Wuebbles
and
K.
Hayhoe
, “
Atmospheric methane and global change
,”
Earth-Sci. Rev.
57
(
3
),
177
210
(
2002
).
21.
A.
Cowtan
,
W.
Simmons
, and
R.
Duncan
, “
A generic compilation strategy for the unitary coupled cluster ansatz
,” arXiv:2007.10515 (
2020
).
22.
K.
Yamamoto
,
D. Z.
Manrique
,
I.
Khan
,
H.
Sawada
, and
D. M.
Ramo
, “
Quantum hardware calculations of periodic systems with partition-measurement symmetry verification: Simplified models of hydrogen chain and iron crystals
,” arXiv:2109.08401 (
2021
).
23.
X.
Bonet-Monroig
,
R.
Sagastizabal
,
M.
Singh
, and
T. E.
O’Brien
, “
Low-cost error mitigation by symmetry verification
,”
Phys. Rev. A
98
(
6
),
062339
(
2018
).
24.
E.
Wigner
and
P.
Jordan
, “
Über das paulische äquivalenzverbot
,”
Z. Phys.
47
,
631
(
1928
).
25.
L.-A.
Wu
,
M. S.
Byrd
, and
D. A.
Lidar
, “
Polynomial-time simulation of pairing models on a quantum computer
,”
Phys. Rev. Lett.
89
,
057904
(
2002
).
26.
T.-C.
Yen
,
R. A.
Lang
, and
A. F.
Izmaylov
, “
Exact and approximate symmetry projectors for the electronic structure problem on a quantum computer
,”
J. Chem. Phys.
151
(
16
),
164111
(
2019
).
27.
K.
Setia
,
R.
Chen
,
J. E.
Rice
,
A.
Mezzacapo
,
M.
Pistoia
, and
J.
Whitfield
, “
Reducing qubit requirements for quantum simulation using molecular point group symmetries
,”
J. Chem. Theory Comput.
16
,
6091
(
2020
).
28.
P.
Čársky
,
L. J.
Schaad
,
B.
Andes Hess
,
M.
Urban
, and
J.
Noga
, “
Use of molecular symmetry in coupled-cluster theory
,”
J. Chem. Phys.
87
(
1
),
411
415
(
1987
).
29.
T.
Matsubara
and
H.
Matsuda
, “
A lattice model of liquid helium, I
,”
Prog. Theor. Phys.
16
(
6
),
569
582
(
1956
).
30.
E. G.
Batyev
and
L. S.
Braginskii
, “
Antiferrornagnet in a strong magnetic field: Analogy with Bose gas
,”
J. Exp. Theor. Phys.
60
(
4
),
781
(
1984
).
31.
A.
Tranter
,
C.
Di Paola
,
D. M.
Ramo
,
D. Z.
Manrique
,
D.
Gowland
,
E.
Plekhanov
,
G.
Greene-Diniz
,
G.
Christopoulou
,
G.
Prokopiou
,
H. D. J.
Keen
,
I.
Polyak
,
I. T.
Khan
,
J.
Pilipczuk
,
J. J. M.
Kirsopp
,
K.
Yamamoto
,
M.
Tudorovskaya
,
M.
Krompiec
,
M.
Sze
, and
N.
Fitzpatrick
, Inquanto: Quantum computational chemistry,
2022
, see https://www.quantinuum.com/products/inquanto and https://medium.com/cambridge-quantum-computing/4fced08d66cc.
32.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
(
1
),
e1340
(
2018
).
33.
M. F.
Herbst
,
M.
Scheurer
,
T.
Fransson
,
D. R.
Rehn
, and
A.
Dreuw
, “
adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
(
6
),
e1462
(
2020
).
34.
J. M.
Pino
,
J. M.
Dreiling
,
C.
Figgatt
,
J. P.
Gaebler
,
S. A.
Moses
,
M. S.
Allman
,
C. H.
Baldwin
,
M.
Foss-Feig
,
D.
Hayes
,
K.
Mayer
et al, “
Demonstration of the trapped-ion quantum CCD computer architecture
,”
Nature
592
(
7853
),
209
213
(
2021
).
35.
Quantinuum h1, powered by honeywell,
2022
.
36.
S.
Sivarajah
,
S.
Dilkes
,
A.
Cowtan
,
W.
Simmons
,
A.
Edgington
, and
R.
Duncan
, “
t|ket⟩: A retargetable compiler for NISQ devices
,”
Quantum Sci. Technol.
6
(
1
),
014003
(
2020
).
37.
Work across platforms with tket,
2022
.
38.
V. K.
Shen
,
D. W.
Siderius
,
W. P.
Krekelberg
, and
H. W.
Hatch
,
NIST Standard Reference Simulation Website
.
NIST Standard Reference Database Number Vol. 173
(
National Institute of Standards and Technology
,
Gaithersburg
,
2021
).
39.
M.
Reiher
,
N.
Wiebe
,
K. M.
Svore
,
D.
Wecker
, and
M.
Troyer
, “
Elucidating reaction mechanisms on quantum computers
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
29
),
7555
7560
(
2017
).
40.
J.
Espinosa-Garcia
and
J. C.
Corchado
, “
QCT dynamics study of the reaction of hydroxyl radical and methane using a new ab initio fitted full-dimensional analytical potential energy surface
,”
Theor. Chem. Acc.
134
,
6
(
2015
).
41.
M.
Motta
,
G. O.
Jones
,
J. E.
Rice
,
T. P.
Gujarati
,
R.
Sakuma
,
I.
Liepuoniute
,
J. M.
Garcia
, and
Y.-y.
Ohnishi
, “
Quantum chemistry simulation of ground- and excited-state properties of the sulfonium cation on a superconducting quantum processor
,”
Chem. Sci.
14
,
2915
(
2022
).
42.
V. E.
Elfving
,
B. W.
Broer
,
M.
Webber
,
J.
Gavartin
,
M. D.
Halls
,
K. P.
Lorton
, and
A.
Bochevarov
, “
How will quantum computers provide an industrially relevant computational advantage in quantum chemistry?
,” arXiv:2009.12472 (
2020
).
43.
K.
Mitarai
and
K.
Fujii
, “
Methodology for replacing indirect measurements with direct measurements
,”
Phys. Rev. Res.
1
(
1
),
013006
(
2019
).
44.
J. F.
Gonthier
,
M. D.
Radin
,
C.
Buda
,
E. J.
Doskocil
,
C. M.
Abuan
, and
J.
Romero.
, “
Measurements as a roadblock to near-term practical quantum advantage in chemistry: Resource analysis
,”
Phys. Rev. Res.
4
,
033154
(
2022
).
45.
P. D.
Johnson
,
A. A.
Kunitsa
,
J. F.
Gonthier
,
M. D.
Radin
,
C.
Buda
,
E. J.
Doskocil
,
C. M.
Abuan
, and
J.
Romero
, “
Reducing the cost of energy estimation in the variational quantum eigensolver algorithm with robust amplitude estimation
,” arXiv:2203.07275 (
2022
).
46.
A.
Zhao
,
N. C.
Rubin
, and
A.
Miyake
, “
Fermionic partial tomography via classical shadows
,”
Phys. Rev. Lett.
127
(
11
),
110504
(
2021
).
47.
S.
Choi
,
I.
Loaiza
, and
A. F.
Izmaylov
, “
Fluid fermionic fragments for optimizing quantum measurements of electronic Hamiltonians in the variational quantum eigensolver
,”
Quantum
7
,
889
(
2022
).
48.
K.
Setia
,
R.
Chen
,
J. E.
Rice
,
A.
Mezzacapo
,
M.
Pistoia
, and
J.
Whitfield
, “
Reducing qubit requirements for quantum simulation using molecular point group symmetries
,” arXiv:1910.14644 (
2020
).
49.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
, “
Simulated quantum computation of molecular energies
,”
Science
309
(
5741
),
1704
1707
(
2005
).
50.
J. D.
Whitfield
,
J.
Biamonte
, and
A.
Aspuru-Guzik
, “
Simulation of electronic structure Hamiltonians using quantum computers
,”
Mol. Phys.
109
(
5
),
735
750
(
2011
).
51.
J.
Romero
,
R.
Babbush
,
J. R.
McClean
,
C.
Hempel
,
P.
Love
, and
A.
Aspuru-Guzik
, “
Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz
,”
Quantum Sci. Technol.
4
,
014008
(
2018
).
52.
Y.
Wang
,
F.
Dolde
,
J.
Biamonte
,
R.
Babbush
,
V.
Bergholm
,
S.
Yang
,
I.
Jakobi
,
P.
Neumann
,
A.
Aspuru-Guzik
,
J. D.
Whitfield
, and
J.
Wrachtrup
, “
Quantum simulation of helium hydride cation in a solid-state spin register
,”
ACS Nano
9
(
8
),
7769
7774
(
2015
).
You do not currently have access to this content.