We develop a theory of reversible diffusion-controlled reactions with generalized binding/unbinding kinetics. In this framework, a diffusing particle can bind to the reactive substrate after a random number of arrivals onto it, with a given threshold distribution. The particle remains bound to the substrate for a random waiting time drawn from another given distribution and then resumes its bulk diffusion until the next binding and so on. When both distributions are exponential, one retrieves the conventional first-order forward and backward reactions whose reversible kinetics is described by generalized Collins–Kimball’s (or back-reaction) boundary condition. In turn, if either of distributions is not exponential, one deals with generalized (non-Markovian) binding or unbinding kinetics (or both). Combining renewal technique with the encounter-based approach, we derive spectral expansions for the propagator, the concentration of particles, and the diffusive flux on the substrate. We study their long-time behavior and reveal how anomalous rarity of binding or unbinding events due to heavy tails of the threshold and waiting time distributions may affect such reversible diffusion-controlled reactions. Distinctions between time-dependent reactivity, encounter-dependent reactivity, and a convolution-type Robin boundary condition with a memory kernel are elucidated.

1.
M. v.
Smoluchowski
, “
Versuch einer mathematischen theorie der koagulations kinetic kolloider Lösungen
,”
Z. Phys. Chem.
92U
,
129
168
(
1918
).
2.
S. A.
Rice
,
Diffusion-Limited Reactions
(
Elsevier
,
Amsterdam
,
1985
).
3.
J. E.
House
,
Principles of Chemical Kinetics
(
Academic Press
,
2007
).
4.
R.
Metzler
,
G.
Oshanin
, and
S.
Redner
,
First-Passage Phenomena and Their Applications
(
World Scientific
,
Singapore
,
2014
).
5.
K.
Lindenberg
,
R.
Metzler
, and
G.
Oshanin
,
Chemical Kinetics: Beyond the Textbook
(
World Scientific
,
Hackensack, NJ
,
2019
).
6.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
D.
Morgan
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
(
Garland Science
,
New York
,
2014
).
7.
D. A.
Lauffenburger
and
J.
Linderman
,
Receptors: Models for Binding, Trafficking, and Signaling
(
Oxford University Press
,
Oxford
,
1993
).
8.
P. C.
Bressloff
and
J. M.
Newby
, “
Stochastic models of intracellular transport
,”
Rev. Mod. Phys.
85
,
135
196
(
2013
).
9.
S.
Redner
,
A Guide to First Passage Processes
(
Cambridge University Press
,
Cambridge
,
2001
).
10.
Z.
Schuss
,
Brownian Dynamics at Boundaries and Interfaces in Physics, Chemistry and Biology
(
Springer
,
New York
,
2013
).
11.
O.
Bénichou
,
C.
Chevalier
,
J.
Klafter
,
B.
Meyer
, and
R.
Voituriez
, “
Geometry-controlled kinetics
,”
Nat. Chem.
2
,
472
477
(
2010
).
12.
O.
Bénichou
and
R.
Voituriez
, “
From first-passage times of random walks in confinement to geometry-controlled kinetics
,”
Phys. Rep.
539
,
225
284
(
2014
).
13.
G.
Vaccario
,
C.
Antoine
, and
J.
Talbot
, “
First-passage times in d-dimensional heterogeneous media
,”
Phys. Rev. Lett.
115
,
240601
(
2015
).
14.
D. S.
Grebenkov
, “
Universal formula for the mean first passage time in planar domains
,”
Phys. Rev. Lett.
117
,
260201
(
2016
).
15.
A.
Godec
and
R.
Metzler
, “
First passage time distribution in heterogeneity controlled kinetics: Going beyond the mean first passage time
,”
Sci. Rep.
6
,
20349
(
2016
).
16.
M.
Galanti
,
D.
Fanelli
,
S. D.
Traytak
, and
F.
Piazza
, “
Theory of diffusion-influenced reactions in complex geometries
,”
Phys. Chem. Chem. Phys.
18
,
15950
15954
(
2016
).
17.
T.
Kolokolnikov
,
M. S.
Titcombe
, and
M. J.
Ward
, “
Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps
,”
Eur. J. Appl. Math
16
,
161
(
2005
).
18.
A.
Singer
,
Z.
Schuss
,
D.
Holcman
, and
R. S.
Eisenberg
, “
Narrow escape, Part I
,”
J. Stat. Phys.
122
,
437
463
(
2006
).
19.
A.
Singer
,
Z.
Schuss
, and
D.
Holcman
, “
Narrow escape, Part II: The circular disk
,”
J. Stat. Phys.
122
,
465
(
2006
).
20.
A.
Singer
,
Z.
Schuss
, and
D.
Holcman
, “
Narrow escape, Part III: Non-smooth domains and Riemann surfaces
,”
J. Stat. Phys.
122
,
491
(
2006
).
21.
Z.
Schuss
,
A.
Singer
, and
D.
Holcman
, “
The narrow escape problem for diffusion in cellular microdomains
,”
Proc. Nat. Acad. Sci. U. S. A.
104
,
16098
16103
(
2007
).
22.
O.
Bénichou
and
R.
Voituriez
, “
Narrow-escape time problem: Time needed for a particle to exit a confining domain through a small window
,”
Phys. Rev. Lett.
100
,
168105
(
2008
).
23.
S.
Pillay
,
M. J.
Ward
,
A.
Peirce
, and
T.
Kolokolnikov
, “
An asymptotic analysis of the mean first passage time for narrow escape problems: Part I: Two-dimensional domains
,”
Multiscale Model. Simul.
8
,
803
835
(
2010
).
24.
A. F.
Cheviakov
,
M. J.
Ward
, and
R.
Straube
, “
An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere
,”
Multiscale Model. Simul.
8
,
836
870
(
2010
).
25.
A. F.
Cheviakov
and
M. J.
Ward
, “
Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps
,”
Math. Comput. Modell.
53
,
1394
1409
(
2011
).
26.
A. F.
Cheviakov
,
A. S.
Reimer
, and
M. J.
Ward
, “
Mathematical modeling and numerical computation of narrow escape problems
,”
Phys. Rev. E
85
,
021131
(
2012
).
27.
D.
Holcman
and
Z.
Schuss
, “
Control of flux by narrow passages and hidden targets in cellular biology
,”
Phys. Prog. Rep.
76
,
074601
(
2013
).
28.
D.
Holcman
and
Z.
Schuss
, “
The narrow escape problem
,”
SIAM Rev.
56
,
213
257
(
2014
).
29.
S. A.
Isaacson
,
A. J.
Mauro
, and
J.
Newby
, “
Uniform asymptotic approximation of diffusion to a small target: Generalized reaction models
,”
Phys. Rev. E
94
,
042414
(
2016
).
30.
D. S.
Grebenkov
and
G.
Oshanin
, “
Diffusive escape through a narrow opening: New insights into a classic problem
,”
Phys. Chem. Chem. Phys.
19
,
2723
2739
(
2017
).
31.
D. S.
Grebenkov
,
R.
Metzler
, and
G.
Oshanin
, “
Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains
,”
New J. Phys.
19
,
103025
(
2017
).
32.
T.
Agranov
and
B.
Meerson
, “
Narrow escape of interacting diffusing particles
,”
Phys. Rev. Lett.
120
,
120601
(
2018
).
33.
S.
Condamin
,
O.
Bénichou
,
V.
Tejedor
,
R.
Voituriez
, and
J.
Klafter
, “
First-passage time in complex scale-invariant media
,”
Nature
450
,
77
(
2007
).
34.
Y.
Lanoiselée
,
N.
Moutal
, and
D. S.
Grebenkov
, “
Diffusion-limited reactions in dynamic heterogeneous media
,”
Nat. Commun.
9
,
4398
(
2018
).
35.
D. S.
Grebenkov
, “
Searching for partially reactive sites: Analytical results for spherical targets
,”
J. Chem. Phys.
132
,
034104
(
2010
).
36.
D. S.
Grebenkov
, “
Subdiffusion in a bounded domain with a partially absorbing-reflecting boundary
,”
Phys. Rev. E
81
,
021128
(
2010
).
37.
T.
Guérin
,
N.
Levernier
,
O.
Bénichou
, and
R.
Voituriez
, “
Mean first-passage times of non-Markovian random walkers in confinement
,”
Nature
534
,
356
359
(
2016
).
38.
T. G.
Mattos
,
C.
Mejía-Monasterio
,
R.
Metzler
, and
G.
Oshanin
, “
First passages in bounded domains: When is the mean first passage time meaningful?
,”
Phys. Rev. E
86
,
031143
(
2012
).
39.
A.
Godec
and
R.
Metzler
, “
Universal proximity effect in target search kinetics in the few-encounter limit
,”
Phys. Rev. X
6
,
041037
(
2016
).
40.
D. S.
Grebenkov
,
R.
Metzler
, and
G.
Oshanin
, “
Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control
,”
Commun. Chem.
1
,
96
(
2018
).
41.
D. S.
Grebenkov
,
R.
Metzler
, and
G.
Oshanin
, “
Towards a full quantitative description of single-molecule reaction kinetics in biological cells
,”
Phys. Chem. Chem. Phys.
20
,
16393
16401
(
2018
).
42.
D. S.
Grebenkov
,
R.
Metzler
, and
G.
Oshanin
, “
Full distribution of first exit times in the narrow escape problem
,”
New J. Phys.
21
,
122001
(
2019
).
43.
F. C.
Collins
and
G. E.
Kimball
, “
Diffusion-controlled reaction rates
,”
J. Colloid Sci.
4
,
425
(
1949
).
44.
H. X.
Zhou
and
R.
Zwanzig
, “
A rate process with an entropy barrier
,”
J. Chem. Phys.
94
,
6147
(
1991
).
45.
D.
Reguera
,
G.
Schmid
,
P. S.
Burada
,
J. M.
Rubí
,
P.
Reimann
, and
P.
Hänggi
, “
Entropic transport: Kinetics, scaling, and control mechanisms
,”
Phys. Rev. Lett.
96
,
130603
(
2006
).
46.
P.
Malgaretti
,
I.
Pagonabarraga
, and
J.
Miguel Rubi
, “
Entropically induced asymmetric passage times of charged tracers across corrugated channels
,”
J. Chem. Phys.
144
,
034901
(
2016
).
47.
A. T.
Skvortsov
,
L.
Dagdug
,
E. F.
Hilder
,
A. M.
Berezhkovskii
, and
S. M.
Bezrukov
, “
Permeability and diffusion resistance of porous membranes: Analytical theory and its numerical test
,”
J. Chem. Phys.
158
,
054114
(
2023
).
48.
O.
Bénichou
,
M.
Moreau
, and
G.
Oshanin
, “
Kinetics of stochastically gated diffusion-limited reactions and geometry of random walk trajectories
,”
Phys. Rev. E
61
,
3388
3406
(
2000
).
49.
J.
Reingruber
and
D.
Holcman
, “
Gated narrow escape time for molecular signaling
,”
Phys. Rev. Lett.
103
,
148102
(
2009
).
50.
S. D.
Lawley
and
J. P.
Keener
, “
A new derivation of Robin boundary conditions through homogenization of a stochastically switching boundary
,”
SIAM J. Appl. Dyn. Syst.
14
,
1845
1867
(
2015
).
51.
P. C.
Bressloff
, “
Stochastic switching in biology: From genotype to phenotype
,”
J. Phys. A: Math. Theor.
50
,
133001
(
2017
).
52.
H. C.
Berg
and
E. M.
Purcell
, “
Physics of chemoreception
,”
Biophys. J.
20
,
193
(
1977
).
53.
D.
Shoup
,
G.
Lipari
, and
A.
Szabo
, “
Diffusion-controlled bimolecular reaction rates. The effect of rotational diffusion and orientation constraints
,”
Biophys. J.
36
,
697
714
(
1981
).
54.
R.
Zwanzig
and
A.
Szabo
, “
Time dependent rate of diffusion-influenced ligand binding to receptors on cell surfaces
,”
Biophys. J.
60
,
671
678
(
1991
).
55.
A. M.
Berezhkovskii
,
M. I.
Monine
,
C. B.
Muratov
, and
S. Y.
Shvartsman
, “
Homogenization of boundary conditions for surfaces with regular arrays of traps
,”
J. Chem. Phys.
124
,
036103
(
2006
).
56.
C. B.
Muratov
and
S. Y.
Shvartsman
, “
Boundary homogenization for periodic arrays of absorbers
,”
Multiscale Model. Simul.
7
,
44
61
(
2008
).
57.
M.
Filoche
,
D. S.
Grebenkov
,
J. S.
Andrade
, Jr.
, and
B.
Sapoval
, “
Passivation of irregular surfaces accessed by diffusion
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
7636
7640
(
2008
).
58.
A. J.
Bernoff
,
A. E.
Lindsay
, and
D. D.
Schmidt
, “
Boundary homogenization and capture time distributions of semipermeable membranes with periodic patterns of reactive sites
,”
Multiscale Model. Simul.
16
,
1411
1447
(
2018
).
59.
B.
Punia
,
S.
Chaudhury
, and
A. B.
Kolomeisky
, “
Understanding the reaction dynamics on heterogeneous catalysts using a simple stochastic approach
,”
J. Phys. Chem. Lett.
12
,
11802
11810
(
2021
).
60.
S.
Chaudhury
,
P.
Jangid
, and
A. B.
Kolomeisky
, “
Dynamics of chemical reactions on single nanocatalysts with heterogeneous active sites
,”
J. Chem. Phys.
158
,
074101
(
2023
).
61.
D. S.
Grebenkov
, “
Partially reflected Brownian motion: A stochastic approach to transport phenomena
,” in
Focus on Probability Theory
, edited by
L. R.
Velle
(
Nova Science Publishers
,
New York
,
2006
), pp.
135
169
.
62.
D. S.
Grebenkov
, “
Residence times and other functionals of reflected Brownian motion
,”
Phys. Rev. E
76
,
041139
(
2007
).
63.
A.
Singer
,
Z.
Schuss
,
A.
Osipov
, and
D.
Holcman
, “
Partially reflected diffusion
,”
SIAM J. Appl. Math.
68
,
844
(
2008
).
64.
H.
Sano
and
M.
Tachiya
, “
Partially diffusion-controlled recombination
,”
J. Chem. Phys.
71
,
1276
(
1979
).
65.
K. R.
Brownstein
and
C. E.
Tarr
, “
Importance of classical diffusion in NMR studies of water in biological cells
,”
Phys. Rev. A
19
,
2446
2453
(
1979
).
66.
G. H.
Weiss
, “
Overview of theoretical models for reaction rates
,”
J. Stat. Phys.
42
,
3
(
1986
).
67.
J. G.
Powles
,
M. J. D.
Mallett
,
G.
Rickayzen
, and
W. A. B.
Evans
, “
Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers
,”
Proc. R. Soc. London A
436
,
391
403
(
1992
).
68.
B.
Sapoval
, “
General formulation of Laplacian transfer across irregular surfaces
,”
Phys. Rev. Lett.
73
,
3314
(
1994
).
69.
B.
Sapoval
,
M.
Filoche
, and
E. R.
Weibel
, “
Smaller is better—But not too small: A physical scale for the design of the mammalian pulmonary acinus
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
10411
10416
(
2002
).
70.
D. S.
Grebenkov
,
M.
Filoche
,
B.
Sapoval
, and
M.
Felici
, “
Diffusion-reaction in branched structures: Theory and application to the lung acinus
,”
Phys. Rev. Lett.
94
,
050602
(
2005
).
71.
S. D.
Traytak
and
W. S.
Price
, “
Exact solution for anisotropic diffusion-controlled reactions with partially reflecting conditions
,”
J. Chem. Phys.
127
,
184508
(
2007
).
72.
P. C.
Bressloff
,
B. A.
Earnshaw
, and
M. J.
Ward
, “
Diffusion of protein receptors on a cylindrical dendritic membrane with partially absorbing traps
,”
SIAM J. Appl. Math.
68
,
1223
1246
(
2008
).
73.
D. S.
Grebenkov
, “
Analytical representations of the spread harmonic measure density
,”
Phys. Rev. E
91
,
052108
(
2015
).
74.
A. S.
Serov
,
C.
Salafia
,
D. S.
Grebenkov
, and
M.
Filoche
, “
The role of morphology in mathematical models of placental gas exchange
,”
J. Appl. Physiol.
120
,
17
28
(
2016
).
75.
F.
Piazza
and
D.
Grebenkov
, “
Diffusion-controlled reaction rate on non-spherical partially absorbing axisymmetric surfaces
,”
Phys. Chem. Chem. Phys.
21
,
25896
(
2019
).
76.
T.
Guérin
,
M.
Dolgushev
,
O.
Bénichou
, and
R.
Voituriez
, “
Universal kinetics of imperfect reactions in confinement
,”
Commun. Chem.
4
,
157
(
2021
).
77.
A. F. H.
Ward
and
L.
Tordai
, “
Time-dependence of boundary tensions of solutions I. The role of diffusion in time-effects
,”
J. Chem. Phys.
14
,
453
461
(
1946
).
78.
F. C.
Goodrich
, “
Random walk with semi-adsorbing barrier
,”
J. Chem. Phys.
22
,
588
594
(
1954
).
79.
J. F.
Baret
, “
Kinetics of adsorption from a solution. Role of the diffusion and of the adsorption-desorption antagonism
,”
J. Phys. Chem.
72
,
2755
2758
(
1968
).
80.
K. J.
Mysels
, “
Diffusion-controlled adsorption kinetics. General solution and some applications
,”
J. Phys. Chem.
86
,
4648
4651
(
1982
).
81.
H. J.
Frisch
and
K. J.
Mysels
, “
Diffusion-controlled adsorption. Concentration kinetics, ideal isotherms, and some applications
,”
J. Phys. Chem.
87
,
3988
3990
(
1983
).
82.
R. P.
Borwankar
and
D. T.
Wasan
, “
The kinetics of adsorption of surface active agents at gas-liquid surfaces
,”
Chem. Eng. Sci.
38
,
1637
1649
(
1983
).
83.
N.
Agmon
, “
Diffusion with back reaction
,”
J. Chem. Phys.
81
,
2811
(
1984
).
84.
Z.
Adamczyk
and
J.
Petlicki
, “
Adsorption and desorption kinetics of molecules and colloidal particles
,”
J. Colloid Interface Sci.
118
,
20
49
(
1987
).
85.
N.
Agmon
,
E.
Pines
, and
D.
Huppert
, “
Geminate recombination in proton-transfer reactions. II. Comparison of diffusional and kinetic schemes
,”
J. Chem. Phys.
88
,
5631
(
1988
).
86.
N.
Agmon
and
G. H.
Weiss
, “
Theory of non-Markovian reversible dissociation reactions
,”
J. Chem. Phys.
91
,
6937
6942
(
1989
).
87.
N.
Agmon
and
A.
Szabo
, “
Theory of reversible diffusion-influenced reactions
,”
J. Chem. Phys.
92
,
5270
5284
(
1990
).
88.
N.
Agmon
, “
Competitive and noncompetitive reversible binding processes
,”
Phys. Rev. E
47
,
2415
(
1993
).
89.
C.-H.
Chang
and
E. I.
Franses
, “
Adsorption dynamics of surfactants at the air/water interface: A critical review of mathematical models, data, and mechanisms
,”
Colloids Surf., A
100
,
1
45
(
1995
).
90.
L.
Liggieri
,
F.
Ravera
, and
A.
Passerone
, “
A diffusion-based approach to mixed adsorption kinetics
,”
Colloids Surf., A
114
,
351
359
(
1996
).
91.
H.
Kim
and
K. J.
Shin
, “
Exact solution of the reversible diffusion-influenced reaction for an isolated pair in three dimensions
,”
Phys. Rev. Lett.
82
,
1578
(
1999
).
92.
K. Y.
Foo
and
B. H.
Hameed
, “
Insights into the modeling of adsorption isotherm systems
,”
Chem. Eng. J.
156
,
2
10
(
2010
).
93.
T.
Prüstel
and
M.
Tachiya
, “
Reversible diffusion-influenced reactions of an isolated pair on some two dimensional surfaces
,”
J. Chem. Phys.
139
,
194103
(
2013
).
94.
T.
Prüstel
and
M.
Meier-Schellersheim
, “
Theory of reversible diffusion-influenced reactions with non-Markovian dissociation in two space dimensions
,”
J. Chem. Phys.
138
,
104112
(
2013
).
95.
T.
Miura
and
K.
Seki
, “
Diffusion influenced adsorption kinetics
,”
J. Phys. Chem. B
119
,
10954
10961
(
2015
).
96.
D. S.
Grebenkov
, “
Reversible reactions controlled by surface diffusion on a sphere
,”
J. Chem. Phys.
151
,
154103
(
2019
).
97.
Y.
Scher
,
O.
Lauber Bonomo
,
A.
Pal
, and
S.
Reuveni
, “
Microscopic theory of adsorption kinetics
,”
J. Chem. Phys.
158
,
094107
(
2023
).
98.
M. J.
Berridge
,
M. D.
Bootman
, and
H. L.
Roderick
, “
Calcium signalling: Dynamics, homeostasis and remodelling
,”
Nat. Rev. Mol. Cell Biol.
4
,
517
529
(
2003
).
99.
K.
Dao Duc
and
D.
Holcman
, “
Threshold activation for stochastic chemical reactions in microdomains
,”
Phys. Rev. E
81
,
041107
(
2010
).
100.
C.
Guerrier
and
D.
Holcman
, “
Hybrid Markov-mass action law model for cell activation by rare binding events: Application to calcium induced vesicular release at neuronal synapses
,”
Sci. Rep.
6
,
35506
(
2016
).
101.
M.
Reva
,
D. A.
DiGregorio
, and
D. S.
Grebenkov
, “
A first-passage approach to diffusion-influenced reversible binding: Insights into nanoscale signaling at the presynapse
,”
Sci. Rep.
11
,
5377
(
2021
).
102.
D. S.
Grebenkov
, “
First passage times for multiple particles with reversible target-binding kinetics
,”
J. Chem. Phys.
147
,
134112
(
2017
).
103.
S. D.
Lawley
and
J. B.
Madrid
, “
First passage time distribution of multiple impatient particles with reversible binding
,”
J. Chem. Phys.
150
,
214113
(
2019
).
104.
D. S.
Grebenkov
and
A.
Kumar
, “
Reversible target-binding kinetics of multiple impatient particles
,”
J. Chem. Phys.
156
,
084107
(
2022
).
105.
D. S.
Grebenkov
and
A.
Kumar
, “
First-passage times of multiple diffusing particles with reversible target-binding kinetics
,”
J. Phys. A: Math. Theor.
55
,
325002
(
2022
).
106.
D. S.
Grebenkov
, “
Paradigm shift in diffusion-mediated surface phenomena
,”
Phys. Rev. Lett.
125
,
078102
(
2020
).
107.
D. S.
Grebenkov
, “
Surface hopping propagator: An alternative approach to diffusion-influenced reactions
,”
Phys. Rev. E
102
,
032125
(
2020
).
108.
D. S.
Grebenkov
, “
Joint distribution of multiple boundary local times and related first-passage time problems with multiple targets
,”
J. Stat. Mech.
2020
,
103205
.
109.
P. C.
Bressloff
, “
Diffusion-mediated absorption by partially-reactive targets: Brownian functionals and generalized propagators
,”
J. Phys. A: Math. Theor.
55
,
205001
(
2022
).
110.
P. C.
Bressloff
, “
A probabilistic model of diffusion through a semipermeable barrier
,”
Proc. R. Soc. London A
478
,
20220615
(
2022
).
111.
P.
Lévy
,
Processus Stochastiques et Mouvement Brownien
(
Gauthier-Villard
,
Paris
,
1965
).
112.
K.
Itô
and
H. P.
McKean
,
Diffusion Processes and Their Sample Paths
(
Springer
,
Berlin
,
1965
).
113.
M.
Freidlin
,
Functional Integration and Partial Differential Equations
,
Annals of Mathematics Studies
(
Princeton University Press
,
Princeton, NJ
,
1985
).
114.
A. N.
Borodin
and
P.
Salminen
,
Handbook of Brownian Motion: Facts and Formulae
(
Birkhauser Verlag
,
Basel-Boston-Berlin
,
1996
).
115.
S. N.
Majumdar
, “
Brownian functionals in physics and computer science
,”
Curr. Sci.
88
,
2076
2092
(
2005
), see https://www.currentscience.ac.in/Volumes/89/12/2076.pdf.
116.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer
,
Berlin
,
1985
).
117.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam
,
1992
).
118.
W.
Arendt
,
A. F. M.
ter Elst
,
J. B.
Kennedy
, and
M.
Sauter
, “
The Dirichlet-to-Neumann operator via hidden compactness
,”
J. Funct. Anal.
266
,
1757
1786
(
2014
).
119.
D.
Daners
, “
Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator
,”
Positivity
18
,
235
256
(
2014
).
120.
A. F. M.
ter Elst
and
E. M.
Ouhabaz
, “
Analysis of the heat kernel of the Dirichlet-to-Neumann operator
,”
J. Funct. Anal.
267
,
4066
4109
(
2014
).
121.
J.
Behrndt
and
A. F. M.
ter Elst
, “
Dirichlet-to-Neumann maps on bounded Lipschitz domains
,”
J. Differ. Equations
259
,
5903
5926
(
2015
).
122.
W.
Arendt
and
A. F. M.
ter Elst
, “
The Dirichlet-to-Neumann operator on exterior domains
,”
Potential Anal.
43
,
313
340
(
2015
).
123.
A.
Hassell
and
V.
Ivrii
, “
Spectral asymptotics for the semiclassical Dirichlet to Neumann operator
,”
J. Spectral Theory
7
,
881
905
(
2017
).
124.
A.
Girouard
and
I.
Polterovich
, “
Spectral geometry of the Steklov problem
,”
J. Spectral Theory
7
,
321
359
(
2017
).
125.
D. S.
Grebenkov
, “
Spectral theory of imperfect diffusion-controlled reactions on heterogeneous catalytic surfaces
,”
J. Chem. Phys.
151
,
104108
(
2019
).
126.
O.
Bénichou
,
C.
Loverdo
,
M.
Moreau
, and
R.
Voituriez
, “
Intermittent search strategies
,”
Rev. Mod. Phys.
83
,
81
(
2011
).
127.
A. V.
Chechkin
,
I. M.
Zaid
,
M.
Lomholt
,
I. M.
Sokolov
, and
R.
Metzler
, “
Bulk-mediated surface diffusion along a cylinder: Propagators and crossovers
,”
Phys. Rev. E
79
,
040105
(
2009
).
128.
O.
Bénichou
,
D.
Grebenkov
,
P.
Levitz
,
C.
Loverdo
, and
R.
Voituriez
, “
Optimal reaction time for surface-mediated diffusion
,”
Phys. Rev. Lett.
105
,
150606
(
2010
).
129.
O.
Bénichou
,
D. S.
Grebenkov
,
P. E.
Levitz
,
C.
Loverdo
, and
R.
Voituriez
, “
Mean first-passage time of surface-mediated diffusion in spherical domains
,”
J. Stat. Phys.
142
,
657
(
2011
).
130.
F.
Rojo
and
C. E.
Budde
, “
Enhanced diffusion through surface excursion: A master-equation approach to the narrow-escape-time problem
,”
Phys. Rev. E
84
,
021117
(
2011
).
131.
A. V.
Chechkin
,
I. M.
Zaid
,
M. A.
Lomholt
,
I. M.
Sokolov
, and
R.
Metzler
, “
Effective surface motion on a reactive cylinder of particles that perform intermittent bulk diffusion
,”
J. Chem. Phys.
134
,
204116
(
2011
).
132.
A. V.
Chechkin
,
I. M.
Zaid
,
M.
Lomholt
,
I. M.
Sokolov
, and
R.
Metzler
, “
Bulk-mediated diffusion on a planar surface: Full solution
,”
Phys. Rev. E
86
,
041101
(
2012
).
133.
J.-F.
Rupprecht
,
O.
Bénichou
,
D. S.
Grebenkov
, and
R.
Voituriez
, “
Exact mean exit time for surface-mediated diffusion
,”
Phys. Rev. E
86
,
041135
(
2012
).
134.
J.-F.
Rupprecht
,
O.
Bénichou
,
D. S.
Grebenkov
, and
R.
Voituriez
, “
Kinetics of active surface-mediated diffusion in spherically symmetric domains
,”
J. Stat. Phys.
147
,
891
(
2012
).
135.
A. M.
Berezhkovskii
,
L.
Dagdug
, and
S. M.
Bezrukov
, “
A new approach to the problem of bulk-mediated surface diffusion
,”
J. Chem. Phys.
143
,
084103
(
2015
).
136.
A. M.
Berezhkovskii
,
L.
Dagdug
, and
S. M.
Bezrukov
, “
Bulk-mediated surface transport in the presence of bias
,”
J. Chem. Phys.
147
,
014103
(
2017
).
137.
P. C.
Bressloff
, “
Renewal equation for single-particle diffusion through a semipermeable interface
,”
Phys. Rev. E
107
,
014110
(
2023
).
138.
P. C.
Bressloff
, “
Renewal equations for single-particle diffusion in multi-layered media
,” arXiv:2301.02895.
139.
D. S.
Grebenkov
, “
Probability distribution of the boundary local time of reflected Brownian motion in Euclidean domains
,”
Phys. Rev. E
100
,
062110
(
2019
).
140.
P.
Levitz
,
M.
Zinsmeister
,
P.
Davidson
,
D.
Constantin
, and
O.
Poncelet
, “
Intermittent Brownian dynamics over a rigid strand: Heavily tailed relocation statistics in a simple geometry
,”
Phys. Rev. E
78
,
030102
(
2008
).
141.
A. J.
Bray
,
S. N.
Majumdar
, and
G.
Schehr
, “
Persistence and first-passage properties in non-equilibrium systems
,”
Adv. Phys.
62
,
225
(
2013
).
142.
N.
Levernier
,
M.
Dolgushev
,
O.
Bénichou
,
R.
Voituriez
, and
T.
Guérin
, “
Survival probability of stochastic processes beyond persistence exponents
,”
Nat. Commun.
10
,
2990
(
2019
).
143.
D. S.
Grebenkov
, “
Statistics of boundary encounters by a particle diffusing outside a compact planar domain
,”
J. Phys. A: Math. Theor.
54
,
015003
(
2021
).
144.
A.
Talbot
, “
The accurate numerical inversion of Laplace transforms
,”
IMA J. Appl. Math.
23
,
97
120
(
1979
).
145.
L. L.
Latour
,
K.
Svoboda
,
P. P.
Mitra
, and
C. H.
Sotak
, “
Time-dependent diffusion of water in a biological model system
,”
Proc. Natl. Acad. Sci. U. S. A.
91
,
1229
1233
(
1994
).
146.
P. N.
Sen
, “
Time-dependent diffusion coefficient as a probe of geometry
,”
Concepts Magn. Reson.
23A
,
1
21
(
2004
).
147.
J.
Wu
and
K. M.
Berland
, “
Propagators and time-dependent diffusion coefficients for anomalous diffusion?
,”
Biophys. J.
95
,
2049
2052
(
2008
).
148.
E. W.
Montroll
and
G. H.
Weiss
, “
Random walks on lattices. II
,”
J. Math. Phys.
6
,
167
(
1965
).
149.
R.
Metzler
and
J.
Klafter
, “
The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
,
1
77
(
2000
).
150.
J.
Klafter
and
I. M.
Sokolov
,
First Steps in Random Walks: From Tools to Applications
(
Oxford University Press
,
2011
).
151.
S. B.
Yuste
,
E.
Abad
, and
K.
Lindenberg
, “
Exploration and trapping of mortal random walkers
,”
Phys. Rev. Lett.
110
,
220603
(
2013
).
152.
B.
Meerson
and
S.
Redner
, “
Mortality, redundancy, and diversity in stochastic search
,”
Phys. Rev. Lett.
114
,
198101
(
2015
).
153.
D. S.
Grebenkov
and
J.-F.
Rupprecht
, “
The escape problem for mortal walkers
,”
J. Chem. Phys.
146
,
084106
(
2017
).
154.
B.
Meerson
, “
Mortal Brownian motion: Three short stories
,”
Int. J. Mod. Phys. B
33
,
1950172
(
2019
).
155.
M. V.
Chubynsky
and
G. W.
Slater
, “
Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion
,”
Phys. Rev. Lett.
113
,
098302
(
2014
).
156.
A. V.
Chechkin
,
F.
Seno
,
R.
Metzler
, and
I. M.
Sokolov
, “
Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities
,”
Phys. Rev. X
7
,
021002
(
2017
).
157.
D. S.
Grebenkov
, “
An encounter-based approach for restricted diffusion with a gradient drift
,”
J. Phys. A: Math. Theor.
55
,
045203
(
2022
).
158.
M. R.
Evans
,
S. N.
Majumdar
, and
G.
Schehr
, “
Stochastic resetting and applications
,”
J. Phys. A: Math. Theor.
53
,
193001
(
2020
).
159.
P. C.
Bressloff
, “
Diffusion-mediated surface reactions and stochastic resetting
,”
J. Phys. A: Math. Theor.
55
,
275002
(
2022
).
160.
Z.
Benkhadaj
and
D. S.
Grebenkov
, “
Encounter-based approach to diffusion with resetting
,”
Phys. Rev. E
106
,
044121
(
2022
).
161.
D. S.
Grebenkov
, “
Encounter-based approach to the escape problem
,”
Phys. Rev. E
107
,
044105
(
2023
).
162.
D. S.
Grebenkov
, “
Depletion of resources by a population of diffusing species
,”
Phys. Rev. E
105
,
054402
(
2022
).
163.
P. C.
Bressloff
, “
Narrow capture problem: An encounter-based approach to partially reactive targets
,”
Phys. Rev. E
105
,
034141
(
2022
).
164.
D. S.
Grebenkov
, “
Statistics of diffusive encounters with a small target: Three complementary approaches
,”
J. Stat. Mech.
2022
,
083205
.
165.
A.
Szabo
, “
Theory of diffusion-influenced fluorescence quenching
,”
J. Phys. Chem.
93
,
6929
(
1989
).
166.
D. S.
Grebenkov
,
M.
Filoche
, and
B.
Sapoval
, “
Spectral properties of the Brownian self-transport operator
,”
Eur. Phys. J. B
36
,
221
231
(
2003
).
167.
S. J.
Chapman
,
R.
Erban
, and
S. A.
Isaacson
, “
Reactive boundary conditions as limits of interaction potentials for Brownian and Langevin dynamics
,”
SIAM J. Appl. Math.
76
,
368
390
(
2016
).
168.
D. S.
Grebenkov
, “
Imperfect diffusion-controlled reactions
,” in
Chemical Kinetics: Beyond the Textbook
, edited by
K.
Lindenberg
,
R.
Metzler
, and
G.
Oshanin
(
World Scientific
,
Hackensack, NJ
,
2019
), pp.
191
219
.
169.
F.
Piazza
, “
The physics of boundary conditions in reaction-diffusion problems
,”
J. Chem. Phys.
157
,
234110
(
2022
).
You do not currently have access to this content.