The many-body simulation of quantum systems is an active field of research that involves several different methods targeting various computing platforms. Many methods commonly employed, particularly coupled cluster methods, have been adapted to leverage the latest advances in modern high-performance computing. Selected configuration interaction (sCI) methods have seen extensive usage and development in recent years. However, the development of sCI methods targeting massively parallel resources has been explored only in a few research works. Here, we present a parallel, distributed memory implementation of the adaptive sampling configuration interaction approach (ASCI) for sCI. In particular, we will address the key concerns pertaining to the parallelization of the determinant search and selection, Hamiltonian formation, and the variational eigenvalue calculation for the ASCI method. Load balancing in the search step is achieved through the application of memory-efficient determinant constraints originally developed for the ASCI-PT2 method. The presented benchmarks demonstrate near optimal speedup for ASCI calculations of Cr2 (24e, 30o) with 106, 107, and 3 × 108 variational determinants on up to 16 384 CPUs. To the best of the authors’ knowledge, this is the largest variational ASCI calculation to date.

1.
K. D.
Vogiatzis
,
D.
Ma
,
J.
Olsen
,
L.
Gagliardi
, and
W. A.
de Jong
, “
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
,”
J. Chem. Phys.
147
,
184111
(
2017
).
2.
C. L.
Janssen
and
I. M.
Nielsen
,
Parallel Computing in Quantum Chemistry
(
2008
).
3.
W. A.
De Jong
,
E.
Bylaska
,
N.
Govind
,
C. L.
Janssen
,
K.
Kowalski
,
T.
Müller
,
I. M. B.
Nielsen
,
H. J. J.
van Dam
,
V.
Veryazov
, and
R.
Lindh
, “
Utilizing high performance computing for chemistry: Parallel computational chemistry
,”
Phys. Chem. Chem. Phys.
12
,
6896
6920
(
2010
).
4.
M. S.
Gordon
and
T. L.
Windus
, “
Editorial: Modern architectures and their impact on electronic structure theory
,”
Chem. Rev.
120
,
9015
9020
(
2020
).
5.
D.
Kothe
,
S.
Lee
, and
I.
Qualters
, “
Exascale computing in the United States
,”
Comput. Scie. Eng.
21
,
17
29
(
2019
).
6.
F.
Alexander
,
A.
Almgren
,
J.
Bell
,
A.
Bhattacharjee
,
J.
Chen
,
P.
Colella
,
D.
Daniel
,
J.
DeSlippe
,
L.
Diachin
,
E.
Draeger
,
A.
Dubey
,
T.
Dunning
,
T.
Evans
,
I.
Foster
,
M.
Francois
,
T.
Germann
,
M.
Gordon
,
S.
Habib
,
M.
Halappanavar
,
S.
Hamilton
,
W.
Hart
,
Z.
Huang
,
A.
Hungerford
,
D.
Kasen
,
P. R. C.
Kent
,
T.
Kolev
,
D. B.
Kothe
,
A.
Kronfeld
,
Y.
Luo
,
P.
Mackenzie
,
D.
McCallen
,
B.
Messer
,
S.
Mniszewski
,
C.
Oehmen
,
A.
Perazzo
,
D.
Perez
,
D.
Richards
,
W. J.
Rider
,
R.
Rieben
,
K.
Roche
,
A.
Siegel
,
M.
Sprague
,
C.
Steefel
,
R.
Stevens
,
M.
Syamlal
,
M.
Taylor
,
J.
Turner
,
J.-L.
Vay
,
A. F.
Voter
,
T. L.
Windus
, and
K.
Yelick
, “
Exascale applications: Skin in the game
,”
Philos. Trans. R. Soc., A
378
,
20190056
(
2020
).
7.
J. A.
Calvin
,
C.
Peng
,
V.
Rishi
,
A.
Kumar
, and
E. F.
Valeev
, “
Many-body quantum chemistry on massively parallel computers
,”
Chem. Rev.
121
,
1203
1231
(
2021
).
8.
U.
Schollwöck
, “
The density-matrix renormalization group
,”
Rev. Mod. Phys.
77
,
259
315
(
2005
).
9.
R.
Olivares-Amaya
,
W.
Hu
,
N.
Nakatani
,
S.
Sharma
,
J.
Yang
, and
G. K.-L.
Chan
, “
The ab-initio density matrix renormalization group in practice
,”
J. Chem. Phys.
142
,
034102
(
2015
).
10.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
352
(
2007
).
11.
E.
Solomonik
,
D.
Matthews
,
J. R.
Hammond
,
J. F.
Stanton
, and
J.
Demmel
, “
A massively parallel tensor contraction framework for coupled-cluster computations
,”
Journal of Parallel and Distributed Computing
74
,
3176
3190
(
2014
) part of Special Issue: Domain-Specific Languages and High-Level Frameworks for High-Performance Computing.
12.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
, “
Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in slater determinant space
,”
J. Chem. Phys.
131
,
054106
(
2009
).
13.
C.-C.
Chang
,
B. M.
Rubenstein
, and
M. A.
Morales
, “
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
,”
Phys. Rev. B
94
,
235144
(
2016
).
14.
M.
Motta
and
S.
Zhang
, “
Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1364
(
2018
).
15.
A.
Szabo
and
N.
Ostlund
,
Modern Quantum Chemistry
(
Dover
,
1982
).
16.
J. J.
Eriksen
,
T. A.
Anderson
,
J. E.
Deustua
,
K.
Ghanem
,
D.
Hait
,
M. R.
Hoffmann
,
S.
Lee
,
D. S.
Levine
,
I.
Magoulas
,
J.
Shen
,
N. M.
Tubman
,
K. B.
Whaley
,
E.
Xu
,
Y.
Yao
,
N.
Zhang
,
A.
Alavi
,
G. K.-L.
Chan
,
M.
Head-Gordon
,
W.
Liu
,
P.
Piecuch
,
S.
Sharma
,
S. L.
Ten-no
,
C. J.
Umrigar
, and
J.
Gauss
, “
The ground state electronic energy of benzene
,”
J. Phys. Chem. Lett.
11
,
8922
8929
(
2020
).
17.
F. A.
Evangelista
, “
Adaptive multiconfigurational wave functions
,”
J. Chem. Phys.
140
,
124114
(
2014
).
18.
N. M.
Tubman
,
J.
Lee
,
T. Y.
Takeshita
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
A deterministic alternative to the full configuration interaction quantum Monte Carlo method
,”
J. Chem. Phys.
145
,
044112
(
2016
).
19.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
, “
Heat-bath configuration interaction: An efficient selected configuration interaction algorithm inspired by heat-bath sampling
,”
J. Chem. Theory Comput.
12
,
3674
3680
(
2016
).
20.
Y.
Garniron
,
A.
Scemama
,
P.-F.
Loos
, and
M.
Caffarel
, “
Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory
,”
J. Chem. Phys.
147
,
034101
(
2017
).
21.
P. M.
Zimmerman
, “
Incremental full configuration interaction
,”
J. Chem. Phys.
146
,
104102
(
2017
).
22.
J. P.
Coe
, “
Machine learning configuration interaction
,”
J. Chem. Theory Comput.
14
,
5739
5749
(
2018
).
23.
N. M.
Tubman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
An efficient deterministic perturbation theory for selected configuration interaction methods
,” arXiv:1808.02049 (
2018
).
24.
E.
Lesko
,
M.
Ardiansyah
, and
K. R.
Brorsen
, “
Vibrational adaptive sampling configuration interaction
,”
J. Chem. Phys.
151
,
164103
(
2019
).
25.
J. B.
Schriber
and
F. A.
Evangelista
, “
Time dependent adaptive configuration interaction applied to attosecond charge migration
,”
J. Chem. Phys.
151
,
171102
(
2019
).
26.
J. W.
Park
, “
Second-order orbital optimization with large active spaces using adaptive sampling configuration interaction (ASCI) and its application to molecular geometry optimization
,”
J. Chem. Theory Comput.
17
,
1522
1534
(
2021
).
27.
C.
Mejuto-Zaera
,
N. M.
Tubman
, and
K. B.
Whaley
, “
Dynamical mean field theory simulations with the adaptive sampling configuration interaction method
,”
Phys. Rev. B
100
,
125165
(
2019
).
28.
C.
Mejuto-Zaera
,
L.
Zepeda-Núñez
,
M.
Lindsey
,
N.
Tubman
,
B.
Whaley
, and
L.
Lin
, “
Efficient hybridization fitting for dynamical mean-field theory via semi-definite relaxation
,”
Phys. Rev. B
101
,
035143
(
2020
).
29.
N. M.
Tubman
,
C. D.
Freeman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
Modern approaches to exact diagonalization and selected configuration interaction with the adaptive sampling ci method
,”
J. Chem. Theory Comput.
16
,
2139
2159
(
2020
).
30.
D. S.
Levine
,
D.
Hait
,
N. M.
Tubman
,
S.
Lehtola
,
K. B.
Whaley
, and
M.
Head-Gordon
, “
CASSCF with extremely large active spaces using the adaptive sampling configuration interaction method
,”
J. Chem. Theory Comput.
16
,
2340
2354
(
2020
).
31.
V.
Kremenetski
,
T.
Hogg
,
S.
Hadfield
,
S. J.
Cotton
, and
N. M.
Tubman
, “
Quantum alternating operator ansatz (QAOA) phase diagrams and applications for quantum chemistry
,” arXiv:2108.13056 [quant-ph] (
2021
).
32.
V.
Kremenetski
,
C.
Mejuto-Zaera
,
S. J.
Cotton
, and
N. M.
Tubman
, “
Simulation of adiabatic quantum computing for molecular ground states
,”
J. Chem. Phys.
155
,
234106
(
2021
).
33.
S. D.
Pineda Flores
, “
Chembot: A machine learning approach to selective configuration interaction
,”
J. Chem. Theory Comput.
17
,
4028
4038
(
2021
).
34.
J. J.
Goings
,
H.
Hu
,
C.
Yang
, and
X.
Li
, “
Reinforcement learning configuration interaction
,”
J. Chem. Theory Comput.
17
,
5482
5491
(
2021
).
35.
A. U.
Bhatty
and
K. R.
Brorsen
, “
An alternative formulation of vibrational heat-bath configuration interaction
,”
Mol. Phys.
119
,
e1936250
(
2021
).
36.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
de Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
DePrince
,
R. A.
DiStasio
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
37.
J. W.
Park
, “
Near-exact CASSCF-level geometry optimization with a large active space using adaptive sampling configuration interaction self-consistent field corrected with second-order perturbation theory (ASCI-SCF-PT2)
,”
J. Chem. Theory Comput.
17
,
4092
4104
(
2021
).
38.
D.-K.
Dang
,
J. A.
Kammeraad
, and
P. M.
Zimmerman
, “
Advances in parallel heat bath configuration interaction
,”
J. Phys. Chem. A
127
,
400
411
(
2023
).
39.
J.
Li
,
M.
Otten
,
A. A.
Holmes
,
S.
Sharma
, and
C. J.
Umrigar
, “
Fast semistochastic heat-bath configuration interaction
,”
J. Chem. Phys.
149
,
214110
(
2018
).
40.
C.
Mejuto-Zaera
,
G.
Weng
,
M.
Romanova
,
S. J.
Cotton
,
K. B.
Whaley
,
N. M.
Tubman
, and
V.
Vlček
, “
Are multi-quasiparticle interactions important in molecular ionization?
,”
J. Chem. Phys.
154
,
121101
(
2021
).
41.
B.
Herzog
,
B.
Casier
,
S.
Lebègue
, and
D.
Rocca
, “
Solving the Schrödinger equation in the configuration space with generative machine learning
,”
J. Chem. Theory Comput.
19
,
2484
2490
(
2023
).
42.
J. E. T.
Smith
,
J.
Lee
, and
S.
Sharma
, “
Near-exact nuclear gradients of complete active space self-consistent field wave functions
,”
J. Chem. Phys.
157
,
094104
(
2022
).
43.
D. B.
Chamaki
,
S.
Hadfield
,
K.
Klymko
,
B.
O’Gorman
, and
N. M.
Tubman
, “
Self-consistent quantum iteratively sparsified Hamiltonian method (SQuISH): A new algorithm for efficient Hamiltonian simulation and compression
,” arXiv:2211.16522 [quant-ph] (
2022
).
44.
D.
Yoffe
,
A.
Natan
, and
A.
Makmal
, “
A qubit-efficient variational selected configuration-interaction method
,” arXiv:2302.06691 [quant-ph] (
2023
).
45.
J. P.
Coe
, “
Analytic gradients for selected configuration interaction
,”
J. Chem. Theory Comput.
19
,
874
886
(
2023
).
46.
X.
Wang
and
S.
Sharma
, “
Relativistic semistochastic heat-bath configuration interaction
,”
J. Chem. Theory Comput.
19
,
848
855
(
2023
).
47.
K.
Klymko
,
C.
Mejuto-Zaera
,
S. J.
Cotton
,
F.
Wudarski
,
M.
Urbanek
,
D.
Hait
,
M.
Head-Gordon
,
K. B.
Whaley
,
J.
Moussa
,
N.
Wiebe
,
W. A.
de Jong
, and
N. M.
Tubman
, “
Real-time evolution for ultracompact Hamiltonian eigenstates on quantum hardware
,”
PRX Quantum
3
,
020323
(
2022
).
48.
N. M.
Tubman
,
C.
Mejuto-Zaera
,
J. M.
Epstein
,
D.
Hait
,
D. S.
Levine
,
W.
Huggins
,
Z.
Jiang
,
J. R.
McClean
,
R.
Babbush
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
Postponing the orthogonality catastrophe: Efficient state preparation for electronic structure simulations on quantum devices
,” arXiv:1809.05523 [quant-ph] (
2018
).
49.
K.
Kanno
,
M.
Kohda
,
R.
Imai
,
S.
Koh
,
K.
Mitarai
,
W.
Mizukami
, and
Y. O.
Nakagawa
, “
Quantum-selected configuration interaction: Classical diagonalization of Hamiltonians in subspaces selected by quantum computers
,” arXiv:2302.11320 [quant-ph] (
2023
).
50.
J. W.
Mullinax
and
N. M.
Tubman
, “
Large-scale sparse wavefunction circuit simulator for applications with the variational quantum eigensolver
,” arXiv:2301.05726 [quant-ph] (
2023
).
51.
M. R.
Hirsbrunner
,
D.
Chamaki
,
J. W.
Mullinax
, and
N. M.
Tubman
, “
Beyond MP2 initialization for unitary coupled cluster quantum circuits
,” arXiv:2301.05666 [quant-ph] (
2023
).
52.
E.
Solomonik
and
L. V.
Kalé
, “
Highly scalable parallel sorting
,” in
2010 IEEE International Symposium on Parallel and Distributed Processing (IPDPS)
(
IEEE
,
2010
), pp.
1
12
.
53.
M.
Axtmann
,
S.
Witt
,
D.
Ferizovic
, and
P.
Sanders
, “
In-place parallel super scalar samplesort (IPS4o)
,” arXiv:1705.02257 [cs.DC] (
2017
).
54.
N.
Bell
and
J.
Hoberock
, “
Thrust: A productivity-oriented library for CUDA
,” in
GPU Computing Gems Jade Edition
(
Elsevier
,
2011
), pp.
359
371
.
55.
J. S.
Spencer
,
N. S.
Blunt
,
S.
Choi
,
J.
Etrych
,
M.-A.
Filip
,
W. M. C.
Foulkes
,
R. S. T.
Franklin
,
W. J.
Handley
,
F. D.
Malone
,
V. A.
Neufeld
,
R.
Di Remigio
,
T. W.
Rogers
,
C. J. C.
Scott
,
J. J.
Shepherd
,
W. A.
Vigor
,
J.
Weston
,
R.
Xu
, and
A. J. W.
Thom
, “
The HANDE-QMC project: Open-source stochastic quantum chemistry from the ground state up
,”
J. Chem. Theory Comput.
15
,
1728
1742
(
2019
).
56.
M.
Axtmann
,
T.
Bingmann
,
P.
Sanders
, and
C.
Schulz
, “
Practical massively parallel sorting
,” in
Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’15
(
Association for Computing Machinery
,
New York, NY, USA
,
2015
), pp.
13
23
.
57.
M.
Blum
,
R. W.
Floyd
,
V.
Pratt
,
R. L.
Rivest
, and
R. E.
Tarjan
, “
Time bounds for selection
,”
J. Comput. Syst. Sci.
7
,
448
461
(
1973
).
58.
R. W.
Floyd
and
R. L.
Rivest
, “
Expected time bounds for selection
,”
Commun. ACM
18
,
165
172
(
1975
).
59.
S. G.
Akl
, “
An optimal algorithm for parallel selection
,”
Inf. Process. Lett.
19
,
47
50
(
1984
).
60.
J.
Choi
,
J.
Demmel
,
I. S.
Dhillon
,
J. J.
Dongarra
,
S.
Ostrouchov
,
A.
Petitet
,
K.
Stanley
,
D. W.
Walker
, and
R. C.
Whaley
, “
ScaLAPACK: A portable linear algebra library for distributed memory computers - design issues and performance
,” in
Applied Parallel Computing, Computations in Physics, Chemistry and Engineering Science
, Second International Workshop, PARA ’95, Lyngby, Denmark, August 21-24, 1995, Proceedings, Lecture Notes in Computer Science, Vol. 1041 edited by
J. J.
Dongarra
,
K.
Madsen
, and
J.
Wasniewski
(
Springer
,
1995
), pp.
95
106
.
61.
ELPA,
2023
.
62.
P.
Kus
,
A.
Marek
,
S. S.
Koecher
,
H. H.
Kowalski
,
C.
Carbogno
,
C.
Scheurer
,
K.
Reuter
,
M.
Scheffler
, and
H.
Lederer
, “
Optimizations of the eigensolvers in the ELPA library
,”
Parallel Comput.
85
,
167
177
(
2019
).
63.
E. R.
Davidson
, “
The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
,”
J. Comput. Phys.
17
,
87
94
(
1975
).
64.
A. V.
Knyazev
, “
Preconditioned eigensolvers—An oxymoron
,”
Electron. Trans. Numer. Anal.
7
,
104
123
(
1998
).
65.
A. V.
Knyazev
, “
Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method
,”
SIAM J. Sci. Comput.
23
,
517
541
(
2001
).
66.
R. W. J. K.
Cullum
,
Lanczos Algorithms for Large Symmetric Eigenvalue Computations
, Theory Vol. I (
SIAM
,
2002
).
67.
Y.
Saad
, “
Krylov subspace methods on supercomputers
,”
SIAM J. Sci. Stat. Comput.
10
,
1200
1232
(
1989
).
68.
A.
Stathopoulos
and
C.
Fischer
, “
Reducing synchronization on the parallel davidson method for the large, sparse, eigenvalue problem
,” in
Supercomputing ’93:Proceedings of the 1993 ACM/IEEE Conference on Supercomputing
(
IEEE
,
1993
), pp.
172
180
.
69.
L.
Borges
and
S.
Oliveira
, “
A parallel Davidson-type algorithm for several eigenvalues
,”
J. Comput. Phys.
144
,
727
748
(
1998
).
70.
M.
Nool
and
A.
van der Ploeg
, “
A parallel Jacobi–Davidson-type method for solving large generalized eigenvalue problems in magnetohydrodynamics
,”
SIAM J. Sci. Comput.
22
,
95
112
(
2000
).
71.
E.
Romero
and
J. E.
Roman
, “
A parallel implementation of the Davidson method for generalized eigenproblems
,”
Adv. Parallel Comput.
19
,
133
140
(
2010
).
72.
E.
Romero
and
J. E.
Roman
, “
A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc
,”
ACM Trans. Math. Software
40
,
13-1
(
2014
).
73.
J. A.
Duersch
,
M.
Shao
,
C.
Yang
, and
M.
Gu
, “
A robust and efficient implementation of LOBPCG
,”
SIAM J. Sci. Comput.
40
,
C655
C676
(
2018
).
74.
R.
Van Beeumen
,
G. D.
Kahanamoku-Meyer
,
N. Y.
Yao
, and
C.
Yang
, “
A scalable matrix-free iterative eigensolver for studying many-body localization
,” in
Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, HPCAsia2020
(
Association for Computing Machinery
,
New York, NY
,
2020
), pp.
179
187
.
75.
R.
Van Beeumen
,
K. Z.
Ibrahim
,
G. D.
Kahanamoku–Meyer
,
N. Y.
Yao
, and
C.
Yang
, “
Enhancing scalability of a matrix-free eigensolver for studying many-body localization
,”
Int. J. High Perform. Comput. Appl.
36
,
307
319
(
2022
).
76.
M.
Hoemmen
, “
Communication-avoiding Krylov subspace methods
,” Ph.D. thesis (
The University of California Berkeley
,
2010
).
77.
S.
Balay
,
S.
Abhyankar
,
M. F.
Adams
,
S.
Benson
,
J.
Brown
,
P.
Brune
,
K.
Buschelman
,
E.
Constantinescu
,
L.
Dalcin
,
A.
Dener
,
V.
Eijkhout
,
J.
Faibussowitsch
,
W. D.
Gropp
,
V.
Hapla
,
T.
Isaac
,
P.
Jolivet
,
D.
Karpeev
,
D.
Kaushik
,
M. G.
Knepley
,
F.
Kong
,
S.
Kruger
,
D. A.
May
,
L. C.
McInnes
,
R. T.
Mills
,
L.
Mitchell
,
T.
Munson
,
J. E.
Roman
,
K.
Rupp
,
P.
Sanan
,
J.
Sarich
,
B. F.
Smith
,
S.
Zampini
,
H.
Zhang
,
H.
Zhang
, and
J.
Zhang
, PETSc/TAO users manual, Technical Report No. ANL-21/39—Revision 3.18,
Argonne National Laboratory
,
2022
.
78.
M.
Grossman
,
C.
Thiele
,
M.
Araya-Polo
,
F.
Frank
,
F. O.
Alpak
, and
V.
Sarkar
, “
A survey of sparse matrix-vector multiplication performance on large matrices
,” arXiv:1608.00636 [cs.PF] (
2016
).
79.
R. H.
Bisseling
, “
Sparse matrix–vector multiplication
,” in
Parallel Scientific Computation: A Structured Approach Using BSP
(
Oxford University Press
,
2020
).
80.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
81.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
82.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
83.
G.
Karypis
and
V.
Kumar
, “
A fast and high quality multilevel scheme for partitioning irregular graphs
,”
SIAM J. Sci. Comput.
20
,
359
392
(
1998
).
84.
E.
Cuthill
and
J.
McKee
, “
Reducing the bandwidth of sparse symmetric matrices
,” in
Proceedings of the 1969 24th National Conference, ACM ’69
(
Association for Computing Machinery
,
New York, NY
,
1969
), pp.
157
172
.
You do not currently have access to this content.