Although thermal transport is among the essential biophysical properties of proteins, its relationship with protein structures, dynamics, and functions is still elusive. The structures of folded proteins are highly inhomogeneous, giving rise to an anisotropic and non-uniform flow of thermal energy during conformational fluctuations. To illustrate the nature of proteins, we developed a theoretical framework for analyzing local thermal transport properties based on the autocorrelation function formalism, constructed a linear-homopolymer-like model, and applied it to a small α-helical protein, the villin headpiece subdomain (HP36), using equilibrium molecular dynamics simulations. As a result, the model reproduced the exact value of the protein’s thermal conductivity with an error of less than 1%. Interestingly, the site-selective analysis of the local, residue-wise, thermal conductivity demonstrated its distinct residue-type dependence, i.e., its magnitude decreased in the order of charged, polar, and hydrophobic residues. In addition, the local density dependence of the residue-wise thermal transport property was also discussed.

1.
M.
Kashio
and
M.
Tominaga
, “
TRP channels in thermosensation
,”
Curr. Opin. Neurobiol.
75
,
102591
(
2022
).
2.
M. C.
Thompson
,
B. A.
Barad
,
A. M.
Wolff
,
H.
Sun Cho
,
F.
Schotte
,
D. M. C.
Schwarz
,
P.
Anfinrud
, and
J. S.
Fraser
, “
Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme
,”
Nat. Chem.
11
(
11
),
1058
1066
(
2019
).
3.
C.
Riedel
,
R.
Gabizon
,
C. A. M.
Wilson
,
K.
Hamadani
,
K.
Tsekouras
,
S.
Marqusee
,
S.
Pressé
, and
C.
Bustamante
, “
The heat released during catalytic turnover enhances the diffusion of an enzyme
,”
Nature
517
(
7533
),
227
230
(
2015
).
4.
S.
Kiyonaka
,
T.
Kajimoto
,
R.
Sakaguchi
,
D.
Shinmi
,
M.
Omatsu-Kanbe
,
H.
Matsuura
,
H.
Imamura
,
T.
Yoshizaki
,
I.
Hamachi
,
T.
Morii
, and
Y.
Mori
, “
Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells
,”
Nat. Methods
10
(
12
),
1232
1238
(
2013
).
5.
M.
Weik
and
J. P.
Colletier
, “
Temperature-dependent macromolecular X-ray crystallography
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
66
,
437
446
(
2010
).
6.
E.
Johnson
,
A. G.
Palmer
III
, and
M.
Rance
, “
Temperature dependence of the NMR generalized order parameter
,”
Proteins: Struct., Funct., Bioinf.
66
(
4
),
796
803
(
2007
).
7.
E. M.
Adams
,
S.
Pezzotti
,
J.
Ahlers
,
M.
Rüttermann
,
M.
Levin
,
A.
Goldenzweig
,
Y.
Peleg
,
S. J.
Fleishman
,
I.
Sagi
, and
M.
Havenith
, “
Local mutations can serve as a game changer for global protein solvent interaction
,”
JACS Au
1
(
7
),
1076
1085
(
2021
).
8.
S.
Tanimoto
,
K.
Tamura
,
S.
Hayashi
,
N.
Yoshida
, and
H.
Nakano
, “
A computational method to simulate global conformational changes of proteins induced by cosolvent
,”
J. Comput. Chem.
42
(
8
),
552
563
(
2021
).
9.
S.
Devineau
,
K.-i.
Inoue
,
R.
Kusaka
,
S.-h.
Urashima
,
S.
Nihonyanagi
,
D.
Baigl
,
A.
Tsuneshige
, and
T.
Tahara
, “
Change of the isoelectric point of hemoglobin at the air/water interface probed by the orientational flip-flop of water molecules
,”
Phys. Chem. Chem. Phys.
19
(
16
),
10292
10300
(
2017
).
10.
T.
Oroguchi
and
M.
Nakasako
, “
Influences of lone-pair electrons on directionality of hydrogen bonds formed by hydrophilic amino acid side chains in molecular dynamics simulation
,”
Sci. Rep.
7
(
1
),
15859
(
2017
).
11.
V.
Conti Nibali
,
G.
D’Angelo
,
A.
Paciaroni
,
D. J.
Tobias
, and
M.
Tarek
, “
On the coupling between the collective dynamics of proteins and their hydration water
,”
J. Phys. Chem. Lett.
5
(
7
),
1181
1186
(
2014
).
12.
B. H.
McMahon
,
H.
Frauenfelder
, and
P. W.
Fenimore
, “
The role of continuous and discrete water structures in protein function
,”
Eur. Phys. J.: Spec. Top.
223
(
5
),
915
926
(
2014
).
13.
Y.
Mizutani
and
M.
Mizuno
, “
Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale
,”
J. Chem. Phys.
157
(
24
),
240901
(
2022
).
14.
S.
Yamashita
,
M.
Mizuno
,
D. P.
Tran
,
H.
Dokainish
,
A.
Kitao
, and
Y.
Mizutani
, “
Vibrational energy transfer from Heme through atomic contacts in proteins
,”
J. Phys. Chem. B
122
(
22
),
5877
5884
(
2018
).
15.
V.
Botan
,
E. H. G.
Backus
,
R.
Pfister
,
A.
Moretto
,
M.
Crisma
,
C.
Toniolo
,
P. H.
Nguyen
,
G.
Stock
, and
P.
Hamm
, “
Energy transport in peptide helices
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
31
),
12749
12754
(
2007
).
16.
E.
Deniz
,
L.
Valiño-Borau
,
J. G.
Löffler
,
K. B.
Eberl
,
A.
Gulzar
,
S.
Wolf
,
P. M.
Durkin
,
R.
Kaml
,
N.
Budisa
,
G.
Stock
, and
J.
Bredenbeck
, “
Through bonds or contacts? Mapping protein vibrational energy transfer using non-canonical amino acids
,”
Nat. Commun.
12
(
1
),
3284
(
2021
).
17.
Proteins: Energy, Heat and Signal Flow
,
Computation in Chemistry
, edited by
D. M.
Leitner
and
J. E.
Straub
(
CRC Press
,
Boca Raton
,
2010
).
18.
H.
Li
,
S.
Wu
, and
A.
Ma
, “
Origin of protein quake: Energy waves conducted by a precise mechanical machine
,”
J. Chem. Theory Comput.
18
(
9
),
5692
5702
(
2022
).
19.
L. M.
Thompson
,
A.
Lasoroski
,
P. M.
Champion
,
J. T.
Sage
,
M. J.
Frisch
,
J. J.
van Thor
, and
M. J.
Bearpark
, “
Analytical harmonic vibrational frequencies for the green fluorescent protein computed with ONIOM: Chromophore mode character and its response to environment
,”
J. Chem. Theory Comput.
10
(
2
),
751
766
(
2014
).
20.
H.
Fujisaki
and
J. E.
Straub
, “
Vibrational energy relaxation in proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
102
(
19
),
6726
6731
(
2005
).
21.
M.
Kobus
,
P. H.
Nguyen
, and
G.
Stock
, “
Coherent vibrational energy transfer along a peptide helix
,”
J. Chem. Phys.
134
(
12
),
124518
(
2011
).
22.
S.
Buchenberg
,
D. M.
Leitner
, and
G.
Stock
, “
Scaling rules for vibrational energy transport in globular proteins
,”
J. Phys. Chem. Lett.
7
(
1
),
25
30
(
2016
).
23.
V.
Conti Nibali
,
G.
Morra
,
M.
Havenith
, and
G.
Colombo
, “
Role of terahertz (THz) fluctuations in the allosteric properties of the PDZ domains
,”
J. Phys. Chem. B
121
(
44
),
10200
10208
(
2017
).
24.
A.
Kumawat
and
S.
Chakrabarty
, “
Hidden electrostatic basis of dynamic allostery in a PDZ domain
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
29
),
E5825
(
2017
).
25.
G.
Miño
,
R.
Barriga
, and
G.
Gutierrez
, “
Hydrogen bonds and heat diffusion in α-helices a computational study
,”
J. Phys. Chem. B
118
(
34
),
10025
10034
(
2014
).
26.
I.
Kurisaki
,
S.
Tanaka
,
I.
Mori
,
T.
Umegaki
,
Y.
Mori
, and
S.
Tanaka
, “
Thermal conductivity and conductance of protein in aqueous solution: Effects of geometrical shape
,”
J. Comput. Chem.
44
(
7
),
857
868
(
2023
).
27.
H. D.
Pandey
and
D. M.
Leitner
, “
Vibrational energy transport in molecules and the statistical properties of vibrational modes
,”
Chem. Phys.
482
,
81
85
(
2017
).
28.
T.
Ishikura
and
T.
Yamato
, “
Energy transfer pathways relevant for long-range intramolecular signaling of photosensory protein revealed by microscopic energy conductivity analysis
,”
Chem. Phys. Lett.
432
(
4–6
),
533
537
(
2006
).
29.
K.
Ota
and
T.
Yamato
, “
Energy exchange network model demonstrates protein allosteric transition: An application to an oxygen sensor protein
,”
J. Phys. Chem. B
123
(
4
),
768
775
(
2019
).
30.
K. M.
Reid
,
T.
Yamato
, and
D. M.
Leitner
, “
Variation of energy transfer rates across protein–water contacts with equilibrium structural fluctuations of a homodimeric hemoglobin
,”
J. Phys. Chem. B
124
(
7
),
1148
1159
(
2020
).
31.
H.
Poudel
and
D. M.
Leitner
, “
Locating dynamic contributions to allostery via determining rates of vibrational energy transfer
,”
J. Chem. Phys.
158
(
1
),
015101
(
2023
).
32.
K. M.
Reid
and
D. M.
Leitner
, in
Allostery: Methods and Protocols
,
Methods in Molecular Biology
, edited by
L.
Di Paola
and
A.
Giuliani
(
Springer
,
New York
,
2021
), pp.
37
59
.
33.
L.
Valiño Borau
,
A.
Gulzar
, and
G.
Stock
, “
Master equation model to predict energy transport pathways in proteins
,”
J. Chem. Phys.
152
(
4
),
045103
(
2020
).
34.
K. M.
Reid
,
T.
Yamato
, and
D. M.
Leitner
, “
Scaling of rates of vibrational energy transfer in proteins with equilibrium dynamics and entropy
,”
J. Phys. Chem. B
122
(
40
),
9331
9339
(
2018
).
35.
N.
Helmer
,
S.
Wolf
, and
G.
Stock
, “
Energy transport and its function in heptahelical transmembrane proteins
,”
J. Phys. Chem. B
126
(
43
),
8735
8746
(
2022
).
36.
J. K.
Agbo
,
R.
Gnanasekaran
, and
D. M.
Leitner
, “
Communication maps: Exploring energy transport through proteins and water
,”
Isr. J. Chem.
54
(
8–9
),
1065
1073
(
2014
).
37.
D. E.
Sagnella
and
J. E.
Straub
, “
Directed energy ‘funneling’ mechanism for heme cooling following ligand photolysis or direct excitation in solvated carbonmonoxy myoglobin
,”
J. Phys. Chem. B
105
(
29
),
7057
7063
(
2001
).
38.
T.
Yamato
,
T.
Wang
,
W.
Sugiura
,
O.
Laprévote
, and
T.
Katagiri
, “
Computational study on the thermal conductivity of a protein
,”
J. Phys. Chem. B
126
(
16
),
3029
3036
(
2022
).
39.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito, CA
,
2000
).
40.
H.
Babaei
,
P.
Keblinski
, and
J. M.
Khodadadi
, “
Equilibrium molecular dynamics determination of thermal conductivity for multi-component systems
,”
J. Appl. Phys.
112
(
5
),
054310
(
2012
).
41.
D. A.
Case
,
I. Y.
Ben-Shalom
,
S. R.
Brozell
et al,
AMBER 19
,
2019
.
42.
C. J.
McKnight
,
P. T.
Matsudaira
, and
P. S.
Kim
, “
NMR structure of the 35-residue villin headpiece subdomain
,”
Nat. Struct. Biol.
4
(
3
),
180
184
(
1997
).
43.
P.
Mark
and
L.
Nilsson
, “
Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
,”
J. Phys. Chem A
105
(
43
),
9954
9960
(
2001
).
44.
D. J.
Price
and
C. L.
Brooks
, , “
A modified TIP3P water potential for simulation with Ewald summation
,”
J. Chem. Phys.
121
(
20
),
10096
10103
(
2004
).
45.
C.
Tian
,
K.
Kasavajhala
,
K. A. A.
Belfon
,
L.
Raguette
,
H.
Huang
,
A. N.
Migues
,
J.
Bickel
,
Y.
Wang
,
J.
Pincay
,
Q.
Wu
, and
C.
Simmerling
, “
ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution
,”
J. Chem. Theory Comput.
16
(
1
),
528
552
(
2020
).
46.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
(
19
),
5179
5197
(
1995
).
47.
C.
Sagui
,
L. G.
Pedersen
, and
T. A.
Darden
, “
Towards an accurate representation of electrostatics in classical force fields: Efficient implementation of multipolar interactions in biomolecular simulations
,”
J. Chem. Phys.
120
(
1
),
73
87
(
2004
).
48.
J.
Esque
,
S.
Léonard
,
A. G.
de Brevern
, and
C.
Oguey
, “
VLDP web server: A powerful geometric tool for analysing protein structures in their environment
,”
Nucleic Acids Res.
41
(
W1
),
W373
W378
(
2013
).
49.
Fundamentals of Heat and Mass Transfer
,
7th ed.
, edited by
T. L.
Bergman
and
F. P.
Incropera
(
Wiley
,
Hoboken, NJ
,
2011
).
50.
Y.
Xue
,
S.
Lofland
, and
X.
Hu
, “
Thermal conductivity of protein-based materials: A review
,”
Polymers
11
(
3
),
456
(
2019
).
51.
H.
Fischer
,
I.
Polikarpov
, and
A. F.
Craievich
, “
Average protein density is a molecular-weight-dependent function
,”
Protein Sci.
13
(
10
),
2825
2828
(
2004
).
52.
Y.
Harpaz
,
M.
Gerstein
, and
C.
Chothia
, “
Volume changes on protein folding
,”
Structure
2
(
7
),
641
649
(
1994
).
53.
F.
Baud
and
S.
Karlin
, “
Measures of residue density in protein structures
,”
Proc. Natl. Acad. Sci. U. S. A.
96
(
22
),
12494
12499
(
1999
).
54.
Y.
Mizutani
and
T.
Kitagawa
, “
Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin
,”
Science
278
(
5337
),
443
446
(
1997
).
55.
A.
Lervik
,
F.
Bresme
,
S.
Kjelstrup
,
D.
Bedeaux
, and
J.
Miguel Rubi
, “
Heat transfer in protein–water interfaces
,”
Phys. Chem. Chem. Phys.
12
(
7
),
1610
(
2010
).
56.
E. R.
Henry
,
W. A.
Eaton
, and
R. M.
Hochstrasser
, “
Molecular dynamics simulations of cooling in laser-excited heme proteins
.”
Proc. Natl. Acad. Sci. U. S. A.
83
(
23
),
8982
8986
(
1986
).
57.
L.
Bu
and
J. E.
Straub
, “
Simulating vibrational energy flow in proteins: Relaxation rate and mechanism for heme cooling in cytochrome c
,”
J. Phys. Chem. B
107
(
44
),
12339
12345
(
2003
).
58.
P. H.
Nguyen
,
S.-M.
Park
, and
G.
Stock
, “
Nonequilibrium molecular dynamics simulation of the energy transport through a peptide helix
,”
J. Chem. Phys.
132
(
2
),
025102
(
2010
).
59.
K.
Gekko
and
H.
Noguchi
, “
Compressibility of globular proteins in water at 25 °C
,”
J. Chem. Phys.
83
(
21
),
2706
2714
(
1979
).
60.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
, “
Flexible simple point-charge water model with improved liquid-state properties
,”
J. Chem. Phys.
124
(
2
),
024503
(
2006
).
61.
K.
Takemura
and
A.
Kitao
, “
Effects of water model and simulation box size on protein diffusional motions
,”
J. Phys. Chem. B
111
(
41
),
11870
11872
(
2007
).
62.
Y.
Xu
and
D. M.
Leitner
, “
Communication maps of vibrational energy transport through photoactive yellow protein
,”
J. Phys. Chem. A
118
(
35
),
7280
7287
(
2014
).
63.
J. K.
Agbo
,
Y.
Xu
,
P.
Zhang
,
J. E.
Straub
, and
D. M.
Leitner
, “
Vibrational energy flow across heme–cytochrome c and cytochrome c–water interfaces
,”
Theor. Chem. Acc.
133
(
7
),
1504
(
2014
).
64.
H.
Hamzi
,
A.
Rajabpour
,
E.
Roldán
, and
A.
Hassanali
, “
Learning the hydrophobic, hydrophilic, and aromatic character of amino acids from thermal relaxation and interfacial thermal conductance
,”
J. Phys. Chem. B
126
(
3
),
670
678
(
2022
).
65.
Y.
Xu
and
D. M.
Leitner
, “
Vibrational energy flow through the green fluorescent protein–water interface: Communication maps and thermal boundary conductance
,”
J. Phys. Chem. B
118
(
28
),
7818
7826
(
2014
).
66.
T.
Ishikura
,
T.
Hatano
, and
T.
Yamato
, “
Atomic stress tensor analysis of proteins
,”
Chem. Phys. Lett.
539–540
,
144
150
(
2012
).

Supplementary Material

You do not currently have access to this content.