The objective of this study was to investigate the prediction of the wetting characteristics obtained from the equilibrium adsorption analysis using the Zeta adsorption isotherm approach with an experimental study. Water vapor’s adsorption and wetting characteristics on a hydroxylated and nano-polished silica substrate were studied in near-equilibrium conditions at temperatures near 298 K. Using a UV–visible interferometer, water vapor adsorbate film thicknesses were measured and converted into amount adsorbed per unit area. The current results show that the wetting transition occurred at an average subcooling value of 0.39 K, less than the predicted value of 0.49 K. All the different experimental observations showed growth of film thickness as a function of subcooling value with a maximum film thickness of 12.6 nm. The analysis of the results further showed that the maximum stable film was in a metastable state that then condensed in a dropwise manner, if perturbed by increasing the subcooling. The study further revealed that the adsorbate is unstable after transitioning. The solid surface energy calculated by including the near-equilibrium observations was comparable and close to that of the equilibrium studies, thus supporting solid surface energy as a material property.

1.
A.
Verdaguer
,
G. M.
Sacha
,
H.
Bluhm
, and
M.
Salmeron
, “
Molecular structure of water at interfaces: Wetting at the nanometer scale
,”
Chem. Rev.
106
,
1478
1510
(
2006
).
2.
A. L.
Barnette
,
D. B.
Asay
, and
S. H.
Kim
, “
Average molecular orientations in the adsorbed water layers on silicon oxide in ambient conditions
,”
Phys. Chem. Chem. Phys.
10
,
4981
4986
(
2008
).
3.
S.
Romero-Vargas Castrillón
,
N.
Giovambattista
,
I. A.
Aksay
, and
P. G.
Debenedetti
, “
Structure and energetics of thin film water
,”
J. Phys. Chem. C
115
,
4624
4635
(
2011
).
4.
E.
Papirer
,
Adsorption on Silica Surfaces
(
CRC Press
,
2000
), Vol.
90
.
5.
F. H.
Cocks
,
P. A.
Klenk
,
S. A.
Watkins
,
W. N.
Simmons
,
J. C.
Cocks
,
E. E.
Cocks
, and
J. C.
Sussingham
, “
Lunar ice: Adsorbed water on subsurface polar dust
,”
Icarus
160
,
386
397
(
2002
).
6.
A.
Abdelmonem
,
S.
Ratnayake
,
J. D.
Toner
, and
J.
Lützenkirchen
, “
Cloud history can change water–ice–surface interactions of oxide mineral aerosols: A case study on silica
,”
Atmos. Chem. Phys.
20
,
1075
1087
(
2020
).
7.
T. J.
Dening
,
D.
Zemlyanov
, and
L. S.
Taylor
, “
Application of an adsorption isotherm to explain incomplete drug release from ordered mesoporous silica materials under supersaturating conditions
,”
J. Controlled Release
307
,
186
199
(
2019
).
8.
J.
Frelichowska
,
M.-A.
Bolzinger
, and
Y.
Chevalier
, “
Pickering emulsions with bare silica
,”
Colloids Surf., A
343
,
70
74
(
2009
).
9.
R. H.
Mohammed
,
O.
Mesalhy
,
M. L.
Elsayed
,
S.
Hou
,
M.
Su
, and
L. C.
Chow
, “
Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers
,”
Appl. Therm. Eng.
137
,
368
376
(
2018
).
10.
M.
Salman
,
S.
Jahan
,
S.
Kanwal
, and
F.
Mansoor
, “
Recent advances in the application of silica nanostructures for highly improved water treatment: A review
,”
Environ. Sci. Pollut. Res.
26
,
21065
21084
(
2019
).
11.
D.
Wang
,
J.
Zhang
,
X.
Tian
,
D.
Liu
, and
K.
Sumathy
, “
Progress in silica gel–water adsorption refrigeration technology
,”
Renewable Sustainable Energy Rev.
30
,
85
104
(
2014
).
12.
A.
Kumar
,
C.
Marcolli
, and
T.
Peter
, “
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions—Part 2: Quartz and amorphous silica
,”
Atmos. Chem. Phys.
19
,
6035
6058
(
2019
).
13.
J. M.
Rosenholm
and
M.
Lindén
, “
Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications
,”
J. Controlled Release
128
,
157
164
(
2008
).
14.
J.
Frelichowska
,
M.-A.
Bolzinger
, and
Y.
Chevalier
, “
Effects of solid particle content on properties of o/w Pickering emulsions
,”
J. Colloid Interface Sci.
351
,
348
356
(
2010
).
15.
D.
Napierska
,
L. C. J.
Thomassen
,
D.
Lison
,
J. A.
Martens
, and
P. H.
Hoet
, “
The nanosilica hazard: Another variable entity
,”
Part. Fibre Toxicol.
7
,
39
(
2010
).
16.
S. J.
Gregg
and
K. S. W.
Sing
,
Adsorption, Surface Area, and Porosity
(
Academic Press
,
1982
).
17.
S.
Maier
and
M.
Salmeron
, “
How does water wet a surface?
,”
Acc. Chem. Res.
48
,
2783
2790
(
2015
).
18.
S.
Yamamoto
,
K.
Andersson
,
H.
Bluhm
,
G.
Ketteler
,
D. E.
Starr
,
T.
Schiros
,
H.
Ogasawara
,
L. G. M.
Pettersson
,
M.
Salmeron
, and
A.
Nilsson
, “
Hydroxyl-induced wetting of metals by water at near-ambient conditions
,”
J. Phys. Chem. C
111
,
7848
7850
(
2007
).
19.
L. J. M.
Schlangen
,
L. K.
Koopal
,
M. A.
Cohen Stuart
, and
J.
Lyklema
, “
Wettability: Thermodynamic relationships between vapour adsorption and wetting
,”
Colloids Surf., A
89
,
157
167
(
1994
).
20.
C. A.
Ward
and
J.
Wu
, “
Effect of adsorption on the surface tensions of solid–fluid interfaces
,”
J. Phys. Chem. B
111
,
3685
3694
(
2007
).
21.
H.
Ghasemi
and
C. A.
Ward
, “
Surface tension of solids in the absence of adsorption
,”
J. Phys. Chem. B
113
,
12632
12634
(
2009
).
22.
C. A.
Ward
and
K.
Sefiane
, “
Adsorption at the solid–liquid interface as the source of contact angle dependence on the curvature of the three-phase line
,”
Adv. Colloid Interface Sci.
161
,
171
180
(
2010
).
23.
S.
Yaghoubian
and
C. A.
Ward
, “
Initiation of wetting, filmwise condensation and condensate drainage from a surface in a gravity field
,”
Phys. Chem. Chem. Phys.
19
,
20808
(
2017
).
24.
S.
Yaghoubian
,
S. H.
Zandavi
, and
C. A.
Ward
, “
From adsorption to condensation: The role of adsorbed molecular clusters
,”
Phys. Chem. Chem. Phys.
18
,
21481
(
2016
).
25.
S. H.
Zandavi
and
C. A.
Ward
, “
Vapour adsorption kinetics: Statistical rate theory and zeta adsorption isotherm approach
,”
Phys. Chem. Chem. Phys.
18
,
25538
25545
(
2016
).
26.
S. H.
Zandavi
and
C. A.
Ward
, “
Nucleation and growth of condensate in nanoporous materials
,”
Phys. Chem. Chem. Phys.
17
,
9828
9834
(
2015
).
27.
S. H.
Zandavi
and
C. A.
Ward
, “
Characterization of the pore structure and surface properties of shale using the zeta adsorption isotherm approach
,”
Energy Fuels
29
,
3004
3010
(
2015
).
28.
C.
Wu
,
S. H.
Zandavi
, and
C. A.
Ward
, “
Prediction of the wetting condition from the zeta adsorption isotherm
,”
Phys. Chem. Chem. Phys.
16
,
25564
25572
(
2014
).
29.
S. H.
Zandavi
and
C. A.
Ward
, “
Clusters in the adsorbates of vapours and gases: Zeta isotherm approach
,”
Phys. Chem. Chem. Phys.
16
,
10979
10989
(
2014
).
30.
N.
Narayanaswamy
and
C. A.
Ward
, “
Specific surface area, wetting, and surface tension of materials from N2 vapor adsorption isotherms
,”
J. Phys. Chem. C
123
,
18336
18346
(
2019
).
31.
N.
Narayanaswamy
and
C. A.
Ward
, “
Area occupied by a water molecule adsorbed on silica at 298 K: Zeta adsorption isotherm approach
,”
J. Phys. Chem. C
124
,
9269
9280
(
2020
).
32.
N.
Narayanaswamy
and
C. A.
Ward
, “
Thermodynamic N2 vapor isotherms of materials: Zeta adsorption isotherm approach
,”
J. Phys. Chem. C
125
,
8440
8455
(
2021
).
33.
N.
Narayanaswamy
and
C. A.
Ward
, “
Specific surface area of nanopowders from argon adsorption at 77 and 87 K: Zeta adsorption isotherm approach
,”
J. Phys. Chem. C
125
,
28115
28135
(
2021
).
34.
J. W.
Gibbs
, “
On the equilibrium of heterogeneous substances
,” in
The Scientific Papers of J. Willard Gibbs
(
Dover
,
New York
,
1961
), Vol.
1
, pp.
55
349
.
35.
J. A. W.
Elliott
, “
Gibbsian surface thermodynamics
,”
J. Phys. Chem. B
124
,
10859
10878
(
2020
).
36.
F. S.
Baker
, “
Adsorptive properties of chromium oxides and silica
,” Ph.D. thesis,
Brunel University
,
1974
.
37.
F. S.
Baker
and
K. S. W.
Sing
, “
Specificity in the adsorption of nitrogen and water on hydroxylated and dehydroxylated silicas
,”
J. Colloid Interface Sci.
55
,
605
(
1975
).
38.
R. L.
Every
,
W. H.
Wade
, and
N.
Hackerman
, “
Free energy of adsorption. I. The influence of substrate structure in SiO2–H2O, SiO2–n-Hexane and SiO2–CH3OH systems
,”
J. Phys. Chem.
65
,
25
29
(
1961
).
39.
M. M.
Dubinin
, “
Microporous structures and absorption properties of carbonaceous adsorbents
,”
Carbon
21
,
359
366
(
1983
).
40.
S.
Yaghoubian
, “
Initiation of condensation of toluene and octane vapours on a Si surface
,”
RSC Adv.
10
,
16291
16301
(
2020
).
41.
X.
Wei
,
C.-M.
Wu
, and
Y.-R.
Li
, “
Atomistic investigation on the kinetic behavior of vapour adsorption and cluster evolution using a statistical rate theory approach
,”
Phys. Chem. Chem. Phys.
23
,
18058
18067
(
2021
).
42.
X.
Wei
,
C.-M.
Wu
, and
Y.-R.
Li
, “
Characterizing on the interfacial thermal transport through adsorption clusters and vibrational behaviors
,”
Int. J. Heat Mass Transfer
183
,
122086
(
2022
).
43.
X.
Wei
,
C.-M.
Wu
, and
Y.-R.
Li
, “
Molecular insight into the formation of adsorption clusters based on the zeta isotherm
,”
Phys. Chem. Chem. Phys.
22
,
10123
10131
(
2020
).
44.
F.
Duan
,
I.
Thompson
, and
C. A.
Ward
, “
Statistical rate theory determination of water properties below the triple point
,”
J. Phys. Chem. B
112
,
8605
8613
(
2008
).
45.
S.
Saber
, “
The transition of adsorbed water vapour on silica to adsorbed water
,” Master’s thesis,
University of Toronto
,
2018
.
46.
A. W.
Fejes Clark
, “
The effect of adsorption on energy transport at a solid–vapour interface
,” Master’s thesis,
University of Toronto
,
2014
.
47.
W.
Wagner
and
A.
Pruß
, “
The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
,”
J. Phys. Chem. Ref. Data
31
,
387
535
(
2002
).
48.
L. J.
Schlangen
,
Adsorption and Wetting: Experiments, Thermodynamics and Molecular Aspects
(
Schlangen
,
1995
).
49.
J.
Taylor
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, ASMSU/Spartans.4.Spartans Textbook
(
University Science Books
,
1997
).
50.
S.
Brunauer
,
P. H.
Emmett
, and
E.
Teller
, “
Adsorption of gases in multimolecular layers
,”
J. Am. Chem. Soc.
60
,
309
319
(
1938
).
51.
V. P.
Carey
,
Liquid–Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
(
CRC Press
,
2020
).
52.
H. B.
Callen
,
Thermodynamics and an Introduction to Thermostatistics
,
2nd ed.
(
John Wiley & Sons, Inc.
,
1985
).
53.
E.
Chibowski
,
L.
Hołysz
,
G. A. M.
Kip
,
A.
van Silfhout
, and
H. J.
Busscher
, “
Surface free energy components of glass from ellipsometry and zeta potential measurements
,”
J. Colloid Interface Sci.
132
,
54
61
(
1989
).
54.
D. B.
Asay
and
S. H.
Kim
, “
Evolution of the adsorbed water layer structure on silicon oxide at room temperature
,”
J. Phys. Chem. B
109
,
16760
16763
(
2005
).
55.
J.-B.
d’espinose de la Caillerie
,
M. R.
Aimeur
,
Y. E.
Kortobi
, and
A. P.
Legrand
, “
Water adsorption on pyrogenic silica followed by 1H MAS NMR
,”
J. Colloid Interface Sci.
194
,
434
439
(
1997
).
56.
L. T.
Zhuravlev
and
A. V.
Kiselev
, “
Surface concentration of hydroxyl groups on amorphous silicas having different specific surface areas
,” in
Surface Area Determination
, edited by
D.
Everett
and
R.
Ottewill
(
Butterworth-Heinemann
,
1970
), pp.
155
160
.
57.
L. T.
Zhuravlev
, “
Concentration of hydroxyl groups on the surface of amorphous silicas
,”
Langmuir
3
,
316
318
(
1987
).
58.
R. M.
Pashley
and
J. A.
Kitchener
, “
Surface forces in adsorbed multilayers of water on quartz
,”
J. Colloid Interface Sci.
71
,
491
500
(
1979
).
59.
B. V.
Derjaguin
and
Z. M.
Zorin
, “
Optical study of the adsorption and surface condensation of vapours in the vicinity of saturation on a smooth surface
,”
Prog. Surf. Sci.
40
,
83
117
(
1992
).
60.
A. L.
Sumner
,
E. J.
Menke
,
Y.
Dubowski
,
J. T.
Newberg
,
R. M.
Penner
,
J. C.
Hemminger
,
L. M.
Wingen
,
T.
Brauers
, and
B. J.
Finlayson-Pitts
, “
The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere
,”
Phys. Chem. Chem. Phys.
6
,
604
613
(
2004
).
61.
M. L.
Gee
,
T. W.
Healy
, and
L. R.
White
, “
Hydrophobicity effects in the condensation of water films on quartz
,”
J. Colloid Interface Sci.
140
,
450
465
(
1990
).
62.
W. R.
Birch
,
M. A.
Knewtson
,
S.
Garoff
,
R. M.
Suter
, and
S.
Satija
, “
Structure of precursing thin films of an anionic surfactant on a silicon oxide/silicon surface
,”
Langmuir
11
,
48
56
(
1995
).
63.
R. R.
Mazzoco
and
P. C.
Wayner
, “
Aqueous wetting films on fused quartz
,”
J. Colloid Interface Sci.
214
,
156
169
(
1999
).
64.
D.
Grant
and
E. C.
Salthouse
, “
The surface resistance of glass during the initial stages of dew formation on a cooled surface
,”
J. Phys. D: Appl. Phys.
10
,
201
(
1977
).
65.
M.
Jakob
, “
Heat transfer in evaporation and condensation II
,”
Mech. Eng.
58
,
729
740
(
1936
).
66.
A.
Majumdar
and
I.
Mezic
, “
Instability of ultra-thin water films and the mechanism of droplet formation on hydrophilic surfaces
,”
J. Heat Transfer
121
,
964
971
(
1999
).
67.
H. M.
Cassel
, “
Condensation and supersaturation of adsorbed phases
,”
J. Chem. Phys.
12
,
115
116
(
1944
).
68.
H. M.
Cassel
, “
Cluster formation and phase transitions in the adsorbed state
,”
J. Phys. Chem.
48
,
195
202
(
1944
).
69.
T. L.
Hill
,
Theory of Physical Adsorption
(
Academic Press
,
1952
), pp.
211
258
.
70.
N.
Narayanaswamy
, “
Zeta adsorption isotherm: Surface area determination and kinetics of vapour adsorption
,” Ph.D. thesis,
University of Toronto
,
2022
.
You do not currently have access to this content.