The effects of a dissolved gas on the behavior of liquid in cylindrical nanopores are investigated in the framework of Gibbsian composite system thermodynamics and classical nucleation theory. An equation is derived relating the phase equilibrium of a mixture of a subcritical solvent and a supercritical gas to the curvature of the liquid–vapor interface. Both the liquid and the vapor phases are treated nonideally, which is shown to be important for the accuracy of the predictions in the case of water with dissolved nitrogen or carbon dioxide. The behavior of water in nanoconfinement is found to be only affected when the gas amount is significantly more than the saturation concentration of these gases at atmospheric conditions. However, such concentrations can be easily reached at high pressures during intrusion if there is sufficient gas present in the system, especially considering gas oversolubility in confinement. By including an adjustable line tension term in the free energy equation (−44 pJ/m for all points), the theory can make predictions in line with the few data points available from recent experimental work. However, we note that such a fitted value empirically accounts for multiple effects and should not be interpreted as the energy of the three-phase contact line. Compared to molecular dynamics simulations, our method is easy to implement, requires minimal computational resources, and is not limited to small pore sizes and/or short simulation times. It provides an efficient path for first-order estimation of the metastability limit of water–gas solutions in nanopores.

1.
A. K.
Kota
,
G.
Kwon
,
W.
Choi
,
J. M.
Mabry
, and
A.
Tuteja
,
Nat. Commun.
3
,
1025
(
2012
).
2.
V.
Eroshenko
,
R.-C.
Regis
,
M.
Soulard
, and
J.
Patarin
,
J. Am. Chem. Soc.
123
,
8129
(
2001
).
3.
G.
Ortiz
,
H.
Nouali
,
C.
Marichal
,
G.
Chaplais
, and
J.
Patarin
,
J. Phys. Chem. C
118
,
7321
(
2014
).
4.
J.
Canivet
,
A.
Fateeva
,
Y.
Guo
,
B.
Coasne
, and
D.
Farrusseng
,
Chem. Soc. Rev.
43
,
5594
(
2014
).
5.
Y.
Grosu
,
M.
Mierzwa
,
V. A.
Eroshenko
,
S.
Pawlus
,
M.
Chorażewski
,
J.-M.
Nedelec
, and
J.-P. E.
Grolier
,
ACS Appl. Mater. Interfaces
9
,
7044
(
2017
).
6.
R.
Helmy
,
Y.
Kazakevich
,
C.
Ni
, and
A. Y.
Fadeev
,
J. Am. Chem. Soc.
127
,
12446
(
2005
).
7.
D.
Stoddart
,
A. J.
Heron
,
E.
Mikhailova
,
G.
Maglia
, and
H.
Bayley
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
7702
(
2009
).
8.
A.
Le Donne
,
A.
Tinti
,
E.
Amayuelas
,
H. K.
Kashyap
,
G.
Camisasca
,
R. C.
Remsing
,
R.
Roth
,
Y.
Grosu
, and
S.
Meloni
,
Adv. Phys. X
7
,
2052353
(
2022
).
9.
A.
Giacomello
,
C. M.
Casciola
,
Y.
Grosu
, and
S.
Meloni
,
Eur. Phys. J. B
94
,
1
(
2021
).
10.
O.
Beckstein
and
M. S. P.
Sansom
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
7063
(
2003
).
11.
R.
Roth
,
D.
Gillespie
,
W.
Nonner
, and
R. E.
Eisenberg
,
Biophys. J.
94
,
4282
(
2008
).
12.
S.
Rao
,
C. I.
Lynch
,
G.
Klesse
,
G. E.
Oakley
,
P. J.
Stansfeld
,
S. J.
Tucker
, and
M. S. P.
Sansom
,
Faraday Discuss.
209
,
231
(
2018
).
13.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature
414
,
188
(
2001
).
14.
C. I.
Lynch
,
S.
Rao
, and
M. S. P.
Sansom
,
Chem. Rev.
120
,
10298
(
2020
).
15.
L.
Guillemot
,
T.
Biben
,
A.
Galarneau
,
G.
Vigier
, and
É.
Charlaix
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
19557
(
2012
).
16.
L.
Guillemot
,
A.
Galarneau
,
G.
Vigier
,
T.
Abensur
, and
É.
Charlaix
,
Rev. Sci. Instrum.
83
,
105105
(
2012
).
17.
A.
Kopp Lugli
,
C. S.
Yost
, and
C. H.
Kindler
,
Eur. J. Anaesthesiol.
26
,
807
(
2009
).
18.
G.
Camisasca
,
A.
Tinti
, and
A.
Giacomello
,
J. Phys. Chem. Lett.
11
,
9171
(
2020
).
19.
A.
Luzar
and
D.
Bratko
,
J. Phys. Chem. B
109
,
22545
(
2005
).
20.
Y.
Qiao
,
G.
Cao
, and
X.
Chen
,
J. Am. Chem. Soc.
129
,
2355
(
2007
).
21.
R.
Bey
,
B.
Coasne
, and
C.
Picard
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2102449118
(
2021
).
22.
W.
Li
,
X.
Zuo
,
X.
Zhou
, and
H.
Lu
,
J. Chem. Phys.
150
,
104702
(
2019
).
23.
K.
Leung
,
A.
Luzar
, and
D.
Bratko
,
Phys. Rev. Lett.
90
,
065502
(
2003
).
24.
Q.
Feng
,
J.
Li
,
X.
Zhou
, and
H.
Lu
,
Chin. Phys. B
31
,
036801
(
2022
).
25.
M.
Li
,
L.
Xu
, and
W.
Lu
,
Langmuir
36
,
4682
(
2020
).
26.
L.
Xu
,
M.
Li
, and
W.
Lu
,
J. Phys. Chem. C
125
,
5596
(
2021
).
27.
M.
Li
,
C.
Zhan
, and
W.
Lu
,
Appl. Phys. Lett.
119
,
181603
(
2021
).
28.
L.
Zargarzadeh
and
J. A. W.
Elliott
,
Langmuir
35
,
13216
(
2019
).
29.
L.
Zargarzadeh
and
J. A. W.
Elliott
,
Langmuir
32
,
11309
(
2016
).
30.
N.
Shardt
and
J. A. W.
Elliott
,
J. Phys. Chem. A
120
,
2194
(
2016
).
31.
N.
Shardt
and
J. A. W.
Elliott
,
J. Phys. Chem. B
122
,
2434
(
2018
).
32.
J. A. W.
Elliott
,
J. Phys. Chem. B
124
,
10859
(
2020
).
33.
J. A. W.
Elliott
,
J. Chem. Phys.
154
,
190901
(
2021
).
34.
M. H.
Factorovich
,
V.
Molinero
, and
D. A.
Scherlis
,
J. Am. Chem. Soc.
136
,
4508
(
2014
).
35.
S. M. A.
Malek
,
P. H.
Poole
, and
I.
Saika-Voivod
,
J. Chem. Phys.
150
,
234507
(
2019
).
36.
B.
Lefevre
,
A.
Saugey
,
J. L.
Barrat
,
L.
Bocquet
,
E.
Charlaix
,
P. F.
Gobin
, and
G.
Vigier
,
J. Chem. Phys.
120
,
4927
(
2004
).
37.
B.
Lefevre
,
A.
Saugey
,
J. L.
Barrat
,
L.
Bocquet
,
E.
Charlaix
,
P. F.
Gobin
, and
G.
Vigier
,
Colloids Surf., A
241
,
265
(
2004
).
38.
N.
Giovambattista
,
A. B.
Almeida
,
S. V.
Buldyrev
, and
A. M.
Alencar
,
J. Phys. Chem. C
125
,
5335
(
2021
).
39.
C. A.
Ward
,
A.
Balakrishnan
, and
F. C.
Hooper
,
J. Basic Eng.
92
,
695
(
1970
).
40.
T. W.
Forest
and
C. A.
Ward
,
J. Chem. Phys.
66
,
2322
(
1976
).
41.
L. N.
Ho
,
Y.
Schuurman
,
D.
Farrusseng
, and
B.
Coasne
,
J. Phys. Chem. C
119
,
21547
(
2015
).
42.
Y.
Hu
,
L.
Huang
,
S.
Zhao
,
H.
Liu
, and
K. E.
Gubbins
,
Mol. Phys.
114
,
3294
(
2016
).
43.
M.
Pera-Titus
,
R.
El-Chahal
,
V.
Rakotovao
,
C.
Daniel
,
S.
Miachon
, and
J.-A.
Dalmon
,
ChemPhysChem
10
,
2082
(
2009
).
44.
L. N.
Ho
,
J.
Perez Pellitero
,
F.
Porcheron
, and
R. J.-M.
Pellenq
,
Langmuir
27
,
8187
(
2011
).
45.
N. L.
Ho
,
F.
Porcheron
, and
R. J.-M.
Pellenq
,
Langmuir
26
,
13287
(
2010
).
46.
D.
Bratko
and
A.
Luzar
,
Langmuir
24
,
1247
(
2008
).
47.
L. N.
Ho
,
S.
Clauzier
,
Y.
Schuurman
,
D.
Farrusseng
, and
B.
Coasne
,
J. Phys. Chem. Lett.
4
,
2274
(
2013
).
48.
D.
Kashchiev
,
Nucleation: Basic Theory with Applications
(
Butterworth Heinemann
,
Eastbourne
,
2000
).
49.
C. A.
Ward
and
E.
Levart
,
J. Appl. Phys.
56
,
491
(
1984
).
50.
J. A. W.
Elliott
and
O.
Voitcu
,
Can. J. Chem. Eng.
85
,
692
(
2007
).
51.
J. A. W.
Elliott
,
Chem. Eng. Educ.
35
,
274
(
2001
), see https://journals.flvc.org/cee/article/view/122926.
52.
L.
Zargarzadeh
and
J. A. W.
Elliott
,
Langmuir
29
,
3610
(
2013
).
53.
J. R.
Elliott
and
C. T.
Lira
,
Introductory Chemical Engineering Thermodynamics
,
2nd ed.
(
Prentice-Hall Inc
,
Upper Saddle River
,
2012
).
54.
H. B.
Callen
,
Thermodynamics and Introduction to Thermostatistics
,
2nd ed.
(
John Wiley & Sons
,
New York
,
1985
).
55.
J. J.
Carroll
,
Chem. Eng. Prog.
95
,
49
(
1999
), see https://www.proquest.com/docview/221523335.
56.
F. L.
Smith
and
A. H.
Harvey
,
Chem. Eng. Prog.
103
,
33
(
2007
), see https://www.nist.gov/publications/avoid-common-pitfalls-when-using-henrys-law.
57.
H.
Renon
and
J. M.
Prausnitz
,
AIChE J.
14
,
135
(
1968
).
58.
D.-Y.
Peng
and
D. B.
Robinson
,
Ind. Eng. Chem. Fundam.
15
,
59
(
1976
).
59.
R.
McGraw
,
J. Phys. Chem. B
105
,
11838
(
2001
).
60.
J. S.
Beck
,
J. C.
Vartuli
,
W. J.
Roth
,
M. E.
Leonowicz
,
C. T.
Kresge
,
K. D.
Schmitt
,
C. T. W.
Chu
,
D. H.
Olson
,
E. W.
Sheppard
,
S. B.
McCullen
,
J. B.
Higgins
, and
J. L.
Schlenker
,
J. Am. Chem. Soc.
114
,
10834
(
1992
).
61.
C. T.
Kresge
,
M. E.
Leonowicz
,
W. J.
Roth
,
J. C.
Vartuli
, and
J. S.
Beck
,
Nature
359
,
710
(
1992
).
62.
C.
Yu
,
J.
Fan
,
B.
Tian
,
D.
Zhao
, and
G. D.
Stucky
,
Adv. Mater.
14
,
1742
(
2002
).
63.
64.
G. G.
Poon
, “
Extending classical nucleation theory: Understanding the effects of trace additives and inhomogeneous concentration distributions
,” Ph.D. thesis,
University of California Santa Barbara
,
2018
.
65.
P. K.
Bikkina
,
O.
Shoham
, and
R.
Uppaluri
,
J. Chem. Eng. Data
56
,
3725
(
2011
).
66.
C. C. M.
Luijten
and
M. E. H.
Van Dongen
,
J. Chem. Phys.
111
,
8524
(
1999
).
67.
A.
Tinti
,
A.
Giacomello
,
Y.
Grosu
, and
C. M.
Casciola
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
E10266
(
2017
).
68.
R.
Giro
,
P. W.
Bryant
,
M.
Engel
,
R. F.
Neumann
, and
M. B.
Steiner
,
Sci. Rep.
7
,
46317
(
2017
).
69.
V.
Talanquer
and
D. W.
Oxtoby
,
J. Chem. Phys.
114
,
2793
(
2001
).
70.
A.
Checco
,
P.
Guenoun
, and
J.
Daillant
,
Phys. Rev. Lett.
91
,
186101
(
2003
).
71.
F.
Staniscia
and
M.
Kanduč
,
J. Chem. Phys.
157
,
184707
(
2022
).
72.
C. A.
Ward
and
J.
Wu
,
Phys. Rev. Lett.
100
,
256103
(
2008
).
73.
M.
Barisik
and
A.
Beskok
,
Mol. Simul.
39
,
700
(
2013
).
74.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
,
J. Phys. Chem. B
107
,
1345
(
2003
).
75.
G.
Navascués
and
P.
Tarazona
,
J. Chem. Phys.
75
,
2441
(
1981
).
76.
A.
Amirfazli
and
A. W.
Neumann
,
Adv. Colloid Interface Sci.
110
,
121
(
2004
).
77.
Y.
Grosu
,
O.
Ievtushenko
,
V.
Eroshenko
,
J. M.
Nedelec
, and
J. P. E.
Grolier
,
Colloids Surf., A
441
,
549
(
2014
).
78.
L.
Coiffard
and
V.
Eroshenko
,
J. Colloid Interface Sci.
300
,
304
(
2006
).

Supplementary Material

You do not currently have access to this content.