The spectacular nature of non-wetting drops mainly arises from their extreme mobility, and quick-silver, for instance, was named after this property. There are two ways to make water non-wetting, and they both rely on texture: either we can roughen a hydrophobic solid, which makes drops looking like pearls, or we can texture the liquid with a hydrophobic powder that “isolates” the resulting marble from its substrate. We observe, here, races between pearls and marbles, and report two effects: (1) the static adhesion of the two objects is different in nature, which we interpret as a consequence of the way they meet their substrates; (2) when they move, pearls are generally quicker than marbles, which might arise from the dissimilarity of the liquid/air interface between these two kinds of globules.

1.
E. B.
Dussan V.
and
R. T. P.
Chow
, “
On the ability of drops or bubbles to stick to non-horizontal surfaces of solids
,”
J. Fluid Mech.
137
,
1
29
(
1983
).
2.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
863
(
1985
).
3.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
4.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
292
(
2013
).
5.
T.
Onda
,
S.
Shibuichi
,
N.
Satoh
, and
K.
Tsujii
, “
Super-water-repellent fractal surfaces
,”
Langmuir
12
,
2125
2127
(
1996
).
6.
R.
Blossey
, “
Self-cleaning surfaces–virtual realities
,”
Nat. Mater.
2
,
301
306
(
2003
).
7.
T.
Mouterde
,
P. S.
Raux
,
C.
Clanet
, and
D.
Quéré
, “
Superhydrophobic frictions
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
8220
8223
(
2019
).
8.
P.
Aussillous
and
D.
Quéré
, “
Liquid marbles
,”
Nature
411
,
924
927
(
2001
).
9.
G.
McHale
and
M. I.
Newton
, “
Liquid marbles: Principles and applications
,”
Soft Matter
7
,
5473
5481
(
2011
).
10.
E.
Bormashenko
, “
New insights into liquid marbles
,”
Soft Matter
8
,
11018
11021
(
2012
).
11.
E.
Bormashenko
,
R.
Pogreb
,
G.
Whyman
, and
A.
Musin
, “
Surface tension of liquid marbles
,”
Colloids Surf., A
351
,
78
82
(
2009
).
12.
L.
Mahadevan
and
Y.
Pomeau
, “
Rolling droplets
,”
Phys. Fluids
11
,
2449
2453
(
1999
).
13.
A. A.
Alazemi
, “
Experimental study of the lubrication mechanism of micro-spherical solid particles between flat surfaces
,”
Lubricants
9
,
81
93
(
2021
).
14.
M.
Sakai
,
H.
Kono
,
A.
Nakajima
,
X.
Zhang
,
H.
Sakai
,
M.
Abe
, and
A.
Fujishima
, “
Sliding of water droplets on the superhydrophobic surface with ZnO nanorods
,”
Langmuir
25
,
14182
14186
(
2009
).
15.
P.
Olin
,
S. B.
Lindström
,
T.
Pettersson
, and
L.
Wågberg
, “
Water drop friction on superhydrophobic surfaces
,”
Langmuir
29
,
9079
9089
(
2013
).
16.
J. V. I.
Timonen
,
M.
Latikka
,
O.
Ikkala
, and
R. H. A.
Ras
, “
Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity
,”
Nat. Commun.
4
,
2398
2405
(
2013
).
17.
X.
Jiang
,
S.
Chen
,
E.
Xu
,
X.
Meng
,
G.
Wu
, and
H. Z.
Li
, “
Motion dynamics of liquid drops and powder-encapsulated liquid marbles on an inclined solid surface
,”
Powder Technol.
394
,
1240
1247
(
2021
).
18.
O.
Schnitzer
,
A. M. J.
Davis
, and
E.
Yariv
, “
Rolling of non-wetting droplets down a gently inclined plane
,”
J. Fluid Mech.
903
,
A25
(
2020
).
19.
J.
Magnaudet
,
M.
Rivero
, and
J.
Fabre
, “
Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow
,”
J. Fluid Mech.
284
,
97
135
(
1995
).
20.
T.
Maxworthy
,
C.
Gnann
,
M.
Kürten
, and
F.
Durst
, “
Experiments on the rise of air bubbles in clean viscous liquids
,”
J. Fluid Mech.
321
,
421
441
(
1996
).
You do not currently have access to this content.