Stochastic chemical processes are described by the chemical master equation satisfying the law of mass-action. We first ask whether the dual master equation, which has the same steady state as the chemical master equation, but with inverted reaction currents, satisfies the law of mass-action and, hence, still describes a chemical process. We prove that the answer depends on the topological property of the underlying chemical reaction network known as deficiency. The answer is yes only for deficiency-zero networks. It is no for all other networks, implying that their steady-state currents cannot be inverted by controlling the kinetic constants of the reactions. Hence, the network deficiency imposes a form of non-invertibility to the chemical dynamics. We then ask whether catalytic chemical networks are deficiency-zero. We prove that the answer is no when they are driven out of equilibrium due to the exchange of some species with the environment.

1.
X.
Yang
,
M.
Heinemann
,
J.
Howard
,
G.
Huber
,
S.
Iyer-Biswas
,
G. L.
Treut
,
M.
Lynch
,
K. L.
Montooth
,
D. J.
Needleman
,
S.
Pigolotti
,
J.
Rodenfels
,
P.
Ronceray
,
S.
Shankar
,
I.
Tavassoly
,
S.
Thutupalli
,
D. V.
Titov
,
J.
Wang
, and
P. J.
Foster
, “
Physical bioenergetics: Energy fluxes, budgets, and constraints in cells
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2026786118
(
2021
).
2.
G.
Ashkenasy
,
T. M.
Hermans
,
S.
Otto
, and
A. F.
Taylor
, “
Systems chemistry
,”
Chem. Soc. Rev.
46
,
2543
2554
(
2017
).
3.
B. N.
Kholodenko
, “
Cell-signalling dynamics in time and space
,”
Nat. Rev. Mol. Cell Biol.
7
,
165
176
(
2006
).
4.
B.
Novák
and
J. J.
Tyson
, “
Design principles of biochemical oscillators
,”
Nat. Rev. Mol. Cell Biol.
9
,
981
991
(
2008
).
5.
D.
Segré
,
D.
Ben-Eli
,
D. W.
Deamer
, and
D.
Lancet
, “
The lipid world
,”
Origins Life Evol. Biospheres
31
,
119
145
(
2001
).
6.
A. J.
Bissette
and
S. P.
Fletcher
, “
Mechanisms of autocatalysis
,”
Angew. Chem., Int. Ed.
52
,
12800
12826
(
2013
).
7.
D.
Lancet
,
R.
Zidovetzki
, and
O.
Markovitch
, “
Systems protobiology: Origin of life in lipid catalytic networks
,”
J. R. Soc., Interface
15
,
20180159
(
2018
).
8.
S. A. P.
van Rossum
,
M.
Tena-Solsona
,
J. H.
van Esch
,
R.
Eelkema
, and
J.
Boekhoven
, “
Dissipative out-of-equilibrium assembly of man-made supramolecular materials
,”
Chem. Soc. Rev.
46
,
5519
5535
(
2017
).
9.
G.
Ragazzon
and
L. J.
Prins
, “
Energy consumption in chemical fuel-driven self-assembly
,”
Nat. Nanotechnol.
13
,
882
889
(
2018
).
10.
E. R.
Kay
,
D. A.
Leigh
, and
F.
Zerbetto
, “
Synthetic molecular motors and mechanical machines
,”
Angew. Chem., Int. Ed.
46
,
72
191
(
2007
).
11.
S.
Erbas-Cakmak
,
D. A.
Leigh
,
C. T.
McTernan
, and
A. L.
Nussbaumer
, “
Artificial molecular machines
,”
Chem. Rev.
115
,
10081
10206
(
2015
).
12.
M.
Esposito
, “
Open questions on nonequilibrium thermodynamics of chemical reaction networks
,”
Commun. Chem.
3
,
107
(
2020
).
13.
P.
Gaspard
, “
Fluctuation theorem for nonequilibrium reactions
,”
J. Chem. Phys.
120
,
8898
8905
(
2004
).
14.
T.
Schmiedl
and
U.
Seifert
, “
Stochastic thermodynamics of chemical reaction networks
,”
J. Chem. Phys.
126
,
044101
(
2007
).
15.
R.
Rao
and
M.
Esposito
, “
Conservation laws and work fluctuation relations in chemical reaction networks
,”
J. Chem. Phys.
149
,
245101
(
2018
).
16.
H.
Qian
and
D. A.
Beard
, “
Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium
,”
Biophys. Chem.
114
,
213
220
(
2005
).
17.
R.
Rao
and
M.
Esposito
, “
Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics
,”
Phys. Rev. X
6
,
041064
(
2016
).
18.
F.
Avanzini
,
E.
Penocchio
,
G.
Falasco
, and
M.
Esposito
, “
Nonequilibrium thermodynamics of non-ideal chemical reaction networks
,”
J. Chem. Phys.
154
,
094114
(
2021
).
19.
F.
Avanzini
and
M.
Esposito
, “
Thermodynamics of concentration vs flux control in chemical reaction networks
,”
J. Chem. Phys.
156
,
014116
(
2022
).
20.
L.
Oberreiter
,
U.
Seifert
, and
A. C.
Barato
, “
Universal minimal cost of coherent biochemical oscillations
,”
Phys. Rev. E
106
,
014106
(
2022
).
21.
E.
Penocchio
,
R.
Rao
, and
M.
Esposito
, “
Thermodynamic efficiency in dissipative chemistry
,”
Nat. Commun.
10
,
3865
(
2019
).
22.
A.
Wachtel
,
R.
Rao
, and
M.
Esposito
, “
Free-energy transduction in chemical reaction networks: From enzymes to metabolism
,”
J. Chem. Phys.
157
,
024109
(
2022
).
23.
E.
Penocchio
,
F.
Avanzini
, and
M.
Esposito
, “
Information thermodynamics for deterministic chemical reaction networks
,”
J. Chem. Phys.
157
,
034110
(
2022
).
24.
K.
Yoshimura
and
S.
Ito
, “
Information geometric inequalities of chemical thermodynamics
,”
Phys. Rev. Res.
3
,
013175
(
2021
).
25.
K.
Yoshimura
and
S.
Ito
, “
Thermodynamic uncertainty relation and thermodynamic speed limit in deterministic chemical reaction networks
,”
Phys. Rev. Lett.
127
,
160601
(
2021
).
26.
B.
Altaner
,
A.
Wachtel
, and
J.
Vollmer
, “
Fluctuating currents in stochastic thermodynamics. II. Energy conversion and nonequilibrium response in kinesin models
,”
Phys. Rev. E
92
,
042133
(
2015
).
27.
G.
Falasco
,
T.
Cossetto
,
E.
Penocchio
, and
M.
Esposito
, “
Negative differential response in chemical reactions
,”
New J. Phys.
21
,
073005
(
2019
).
28.
M.
Samoilov
,
A.
Arkin
, and
J.
Ross
, “
Signal processing by simple chemical systems
,”
J. Phys. Chem. A
106
,
10205
10221
(
2002
).
29.
D.
Forastiere
,
G.
Falasco
, and
M.
Esposito
, “
Strong current response to slow modulation: A metabolic case-study
,”
J. Chem. Phys.
152
,
134101
(
2020
).
30.
J. H.
Fritz
,
B.
Nguyen
, and
U.
Seifert
, “
Stochastic thermodynamics of chemical reactions coupled to finite reservoirs: A case study for the Brusselator
,”
J. Chem. Phys.
152
,
235101
(
2020
).
31.
P.
Gaspard
, “
Stochastic approach to entropy production in chemical chaos
,”
Chaos
30
,
113103
(
2020
).
32.
J. G.
Kemeny
,
J. L.
Snell
, and
A. W.
Knapp
,
Denumerable Markov Chains
,
2nd ed.
(
Springer
,
New York
,
1976
).
33.
J. R.
Norris
,
Markov Chains
(
Cambridge University Press
,
1997
).
34.
G. E.
Crooks
, “
Path-ensemble averages in systems driven far from equilibrium
,”
Phys. Rev. E
61
,
2361
2366
(
2000
).
35.
V. Y.
Chernyak
,
M.
Chertkov
, and
C.
Jarzynski
, “
Path-integral analysis of fluctuation theorems for general Langevin processes
,”
J. Stat. Mech.: Theory Exp.
2006
,
P08001
.
36.
M.
Esposito
and
C.
Van den Broeck
, “
Three detailed fluctuation theorems
,”
Phys. Rev. Lett.
104
,
090601
(
2010
).
37.
D. F.
Anderson
,
G.
Craciun
, and
T. G.
Kurtz
, “
Product-form stationary distributions for deficiency zero chemical reaction networks
,”
Bull. Math. Biol.
72
,
1947
1970
(
2010
).
38.
D.
Cappelletti
and
C.
Wiuf
, “
Product-form Poisson-like distributions and complex balanced reaction systems
,”
SIAM J. Appl. Math.
76
,
411
432
(
2016
).
39.
M.
Polettini
,
A.
Wachtel
, and
M.
Esposito
, “
Dissipation in noisy chemical networks: The role of deficiency
,”
J. Chem. Phys.
143
,
184103
(
2015
).
40.
A. D.
McNaught
and
A.
Wilkinson
,
IUPAC Compendium of Chemical Terminology (“The Gold Book”)
(
Blackwell Scientific
,
Oxford, United Kingdom
,
2009
).
41.
A.
Blokhuis
,
D.
Lacoste
, and
P.
Nghe
, “
Universal motifs and the diversity of autocatalytic systems
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
25230
25236
(
2020
).
42.
S.
Dal Cengio
,
V.
Lecomte
, and
M.
Polettini
, “
Geometry of nonequilibrium reaction networks
,” Phys. Rev. X (in press) (
2022
); arXiv:2208.01290.
43.
D. A.
McQuarrie
, “
Stochastic approach to chemical kinetics
,”
J. Appl. Probab.
4
,
413
478
(
1967
).
44.
D. T.
Gillespie
, “
A rigorous derivation of the chemical master equation
,”
Physica A
188
,
404
425
(
1992
).
45.

The law of mass-action is satisfied for elementary reactions in ideal dilute solutions, that is, chemical species are noninteracting and there is a species, called the solvent, which is not involved in the chemical reactions and is much more abundant than all the other species. If reactions are not elementary or the chemical species interact, reaction rates might not satisfy the law of mass-action. In this work, we consider only elementary reactions in ideal dilute solutions.

46.
J.
Schnakenberg
, “
Network theory of microscopic and macroscopic behavior of master equation systems
,”
Rev. Mod. Phys.
48
,
571
585
(
1976
).
47.
S.
Schuster
and
R.
Schuster
, “
A generalization of Wegscheider’s condition. implications for properties of steady states and for quasi-steady-state approximation
,”
J. Math. Chem.
3
,
25
42
(
1989
).
48.

The kinetic non-invertibility of catalytic CRNs implies that there are no kinetic constants that can generate the dual process, where the net steady-state currents of all reactions are inverted. However, this does not exclude that the net steady-state currents of some specific reactions (e.g., the reaction producing a desired species) can be inverted in catalytic CRNs by controlling the kinetic constants.

49.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North-Holland Personal Library, Elsevier Science
,
2011
).
You do not currently have access to this content.