We report a combined rheology, x-ray photon correlation spectroscopy, and modeling study of gel formation and aging in suspensions of nanocolloidal spheres with volume fractions of 0.20 and 0.43 and with a short-range attraction whose strength is tuned by changing temperature. Following a quench from high temperature, where the colloids are essentially hard spheres, to a temperature below the gel point, the suspensions form gels that undergo aging characterized by a steadily increasing elastic shear modulus and slowing, increasingly constrained microscopic dynamics. The aging proceeds at a faster rate for stronger attraction strength. When the attraction strength is suddenly lowered during aging, the gel properties evolve non-monotonically in a manner resembling the Kovacs effect in glasses, in which the modulus decreases and the microscopic dynamics become less constrained for a period before more conventional aging resumes. Eventually, the properties of the gel following the decrease in attraction strength converge to those of a gel that has undergone aging at the lower attraction strength throughout. The time scale of this convergence increases as a power law with the age at which the attraction strength is decreased and decreases exponentially with the magnitude of the change in attraction. A model for gel aging in which particles attach and detach from the gel at rates that depend on their contact number reproduces these trends and reveals that the non-monotonic behavior results from the dispersion in the rates that the populations of particles with different contact number adjust to the new attraction strength.

1.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
2.
S.
Manley
,
H. M.
Wyss
,
K.
Miyazaki
,
J. C.
Conrad
,
V.
Trappe
,
L. J.
Kaufman
,
D. R.
Reichman
, and
D. A.
Weitz
, “
Glasslike arrest in spinodal decomposition as a route to colloidal gelation
,”
Phys. Rev. Lett.
95
,
238302
(
2005
).
3.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
503
(
2008
).
4.
Y.
Gao
,
J.
Kim
, and
M. E.
Helgeson
, “
Microdynamics and arrest of coarsening during spinodal decomposition in thermoreversible colloidal gels
,”
Soft Matter
11
,
6360
6370
(
2015
).
5.
A. P. R.
Eberle
,
N. J.
Wagner
, and
R.
Castañeda-Priego
, “
Dynamical arrest transition in nanoparticle dispersions with short-range interactions
,”
Phys. Rev. Lett.
106
,
105704
(
2011
).
6.
N. E.
Valadez-Pérez
,
Y.
Liu
,
A. P. R.
Eberle
,
N. J.
Wagner
, and
R.
Castañeda-Priego
, “
Dynamical arrest in adhesive hard-sphere dispersions driven by rigidity percolation
,”
Phys. Rev. E
88
,
060302
(
2013
).
7.
S.
Zhang
,
L.
Zhang
,
M.
Bouzid
,
D. Z.
Rocklin
,
E.
Del Gado
, and
X.
Mao
, “
Correlated rigidity percolation and colloidal gels
,”
Phys. Rev. Lett.
123
,
058001
(
2019
).
8.
C. P.
Royall
and
S. R.
Williams
, “
The role of local structure in dynamical arrest
,”
Phys. Rep.
560
,
1
75
(
2015
).
9.
H.
Tsurusawa
,
M.
Leocmach
,
J.
Russo
, and
H.
Tanaka
, “
Direct link between mechanical stability in gels and percolation of isostatic particles
,”
Sci. Adv.
5
,
eaav6090
(
2019
).
10.
C. J.
Dibble
,
M.
Kogan
, and
M. J.
Solomon
, “
Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity
,”
Phys. Rev. E
74
,
041403
(
2006
).
11.
C.
Patrick Royall
,
S. R.
Williams
,
T.
Ohtsuka
, and
H.
Tanaka
, “
Direct observation of a local structural mechanism for dynamic arrest
,”
Nat. Mater.
7
,
556
561
(
2008
).
12.
D.
Richard
,
J.
Hallett
,
T.
Speck
, and
C. P.
Royall
, “
Coupling between criticality and gelation in ‘sticky’ spheres: A structural analysis
,”
Soft Matter
14
,
5554
5564
(
2018
).
13.
A.
Zaccone
,
H. H.
Winter
,
M.
Siebenbürger
, and
M.
Ballauff
, “
Linking self-assembly, rheology, and gel transition in attractive colloids
,”
J. Rheol.
58
,
1219
1244
(
2014
).
14.
K.
Vogtt
,
G.
Beaucage
,
K.
Rishi
,
H.
Jiang
, and
A.
Mulderig
, “
Hierarchical approach to aggregate equilibria
,”
Phys. Rev. Res.
1
,
033081
(
2019
).
15.
J. N.
Immink
,
J. J. E.
Maris
,
J. J.
Crassous
,
J.
Stenhammar
, and
P.
Schurtenberger
, “
Reversible formation of thermoresponsive binary particle gels with tunable structural and mechanical properties
,”
ACS Nano
13
,
3292
3300
(
2019
).
16.
M. B.
Gordon
,
C. J.
Kloxin
, and
N. J.
Wagner
, “
The rheology and microstructure of an aging thermoreversible colloidal gel
,”
J. Rheol.
61
,
23
34
(
2017
).
17.
A.
Jain
,
F.
Schulz
,
I.
Lokteva
,
L.
Frenzel
,
G.
Grübel
, and
F.
Lehmkühler
, “
Anisotropic and heterogeneous dynamics in an aging colloidal gel
,”
Soft Matter
16
,
2864
2872
(
2020
).
18.
N. C.
Keim
,
J. D.
Paulsen
,
Z.
Zeravcic
,
S.
Sastry
, and
S. R.
Nagel
, “
Memory formation in matter
,”
Rev. Mod. Phys.
91
,
035002
(
2019
).
19.
Q.
Zhang
,
D.
Bahadur
,
E. M.
Dufresne
,
P.
Grybos
,
P.
Kmon
,
R. L.
Leheny
,
P.
Maj
,
S.
Narayanan
,
R.
Szczygiel
,
S.
Ramakrishnan
, and
A.
Sandy
, “
Dynamic scaling of colloidal gel formation at intermediate concentrations
,”
Phys. Rev. Lett.
119
,
178006
(
2017
).
20.
D.
Bahadur
,
Q.
Zhang
,
E. M.
Dufresne
,
P.
Grybos
,
P.
Kmon
,
R. L.
Leheny
,
P.
Maj
,
S.
Narayanan
,
R.
Szczygiel
,
J. W.
Swan
,
A.
Sandy
, and
S.
Ramakrishnan
, “
Evolution of structure and dynamics of thermo-reversible nanoparticle gels—A combined XPCS and rheology study
,”
J. Chem. Phys.
151
,
104902
(
2019
).
21.
A. J.
Kovacs
, “
La contraction isotherme du volume des polymères amorphes
,”
J. Polym. Sci.
30
,
131
(
1958
).
22.
A. J.
Kovacs
,
R. A.
Stratton
, and
J. D.
Ferry
, “
Dynamic mechanical properties of polyvinyl acetate in shear in the glass transition temperature range
,”
J. Phys. Chem.
67
,
152
161
(
1963
).
23.
J.
Bergenholtz
and
M.
Fuchs
, “
Nonergodicity transitions in colloidal suspensions with attractive interactions
,”
Phys. Rev. E
59
,
5706
5715
(
1999
).
24.
K. N.
Pham
,
S. U.
Egelhaaf
,
P. N.
Pusey
, and
W. C. K.
Poon
, “
Glasses in hard spheres with short-range attraction
,”
Phys. Rev. E
69
,
011503
(
2004
).
25.
M. A.
Lohr
,
T.
Still
,
R.
Ganti
,
M. D.
Gratale
,
Z. S.
Davidson
,
K. B.
Aptowicz
,
C. P.
Goodrich
,
D. M.
Sussman
, and
A. G.
Yodh
, “
Vibrational and structural signatures of the crossover between dense glassy and sparse gel-like attractive colloidal packings
,”
Phys. Rev. E
90
,
062305
(
2014
).
26.
W.
Stöber
,
A.
Fink
, and
E.
Bohn
, “
Controlled growth of monodisperse silica spheres in the micron size range
,”
J. Colloid Interface Sci.
26
,
62
69
(
1968
).
27.
G. H.
Bogush
,
M. A.
Tracy
, and
C. F.
Zukoski
, “
Preparation of monodisperse silica particles: Control of size and mass fraction
,”
J. Non-Cryst. Solids
104
,
95
106
(
1988
).
28.
S.
Ramakrishnan
,
V.
Gopalakrishnan
, and
C. F.
Zukoski
, “
Clustering and mechanics in dense depletion and thermal gels
,”
Langmuir
21
,
9917
9925
(
2005
).
29.
A. S.
Negi
,
C. G.
Redmon
,
S.
Ramakrishnan
, and
C. O.
Osuji
, “
Viscoelasticity of a colloidal gel during dynamical arrest: Evolution through the critical gel and comparison with a soft colloidal glass
,”
J. Rheol.
58
,
1557
1579
(
2014
).
30.
A. P. R.
Eberle
,
R.
Castañeda-Priego
,
J. M.
Kim
, and
N. J.
Wagner
, “
Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions
,”
Langmuir
28
,
1866
1878
(
2012
).
31.
K.
Suman
and
N. J.
Wagner
, “
Anomalous rheological aging of a model thermoreversible colloidal gel following a thermal quench
,”
J. Chem. Phys.
157
,
024901
(
2022
).
32.
H.
Guo
,
S.
Ramakrishnan
,
J. L.
Harden
, and
R. L.
Leheny
, “
Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations
,”
J. Chem. Phys.
135
,
154903
(
2011
).
33.
W.
van Megen
and
S. M.
Underwood
, “
Glass transition in colloidal hard spheres: Mode-coupling theory analysis
,”
Phys. Rev. Lett.
70
,
2766
2769
(
1993
).
34.
H.
Guo
,
S.
Ramakrishnan
,
J. L.
Harden
, and
R. L.
Leheny
, “
Connecting nanoscale motion and rheology of gel-forming colloidal suspensions
,”
Phys. Rev. E
81
,
050401
(
2010
).
35.
Y.-L.
Chen
and
K. S.
Schweizer
, “
Microscopic theory of gelation and elasticity in polymer–particle suspensions
,”
J. Chem. Phys.
120
,
7212
7222
(
2004
).
36.
Y.
Chen
,
S. A.
Rogers
,
S.
Narayanan
,
J. L.
Harden
, and
R. L.
Leheny
, “
Microscopic ergodicity breaking governs the emergence and evolution of elasticity in glass-forming nanoclay suspensions
,”
Phys. Rev. E
102
,
042619
(
2020
).
37.
L. C. E.
Struik
,
Physical Aging in Amorphous Polymers and Other Materials
(
Elsevier
,
Amsterdam
,
1978
).
38.
R. L.
Leheny
and
S. R.
Nagel
, “
Frequency-domain study of physical aging in a simple liquid
,”
Phys. Rev. B
57
,
5154
5162
(
1998
).
39.
S.
Mossa
and
F.
Sciortino
, “
Crossover (or Kovacs) effect in an aging molecular liquid
,”
Phys. Rev. Lett.
92
,
045504
(
2004
).
40.
D. P. B.
Aji
,
P.
Wen
, and
G. P.
Johari
, “
Memory effect in enthalpy relaxation of two metal–alloy glasses
,”
J. Non-Cryst. Solids
353
,
3796
3811
(
2007
).
41.
X.
Di
,
K. Z.
Win
,
G. B.
McKenna
,
T.
Narita
,
F.
Lequeux
,
S. R.
Pullela
, and
Z.
Cheng
, “
Signatures of structural recovery in colloidal glasses
,”
Phys. Rev. Lett.
106
,
095701
(
2011
).
42.
L. F.
Cugliandolo
,
G.
Lozano
, and
H.
Lozza
, “
Memory effects in classical and quantum mean-field disordered models
,”
Eur. Phys. J. B
41
,
87
96
(
2004
).
43.
A.
Prados
and
E.
Trizac
, “
Kovacs-like memory effect in driven granular gases
,”
Phys. Rev. Lett.
112
,
198001
(
2014
).
44.
Y.
Lahini
,
O.
Gottesman
,
A.
Amir
, and
S. M.
Rubinstein
, “
Nonmonotonic aging and memory retention in disordered mechanical systems
,”
Phys. Rev. Lett.
118
,
085501
(
2017
).
45.
R.
Kürsten
,
V.
Sushkov
, and
T.
Ihle
, “
Giant Kovacs-like memory effect for active particles
,”
Phys. Rev. Lett.
119
,
188001
(
2017
).
46.
I. L.
Morgan
,
R.
Avinery
,
G.
Rahamim
,
R.
Beck
, and
O. A.
Saleh
, “
Glassy dynamics and memory effects in an intrinsically disordered protein construct
,”
Phys. Rev. Lett.
125
,
058001
(
2020
).
47.
T. P.
Dhavale
,
S.
Jatav
, and
Y. M.
Joshi
, “
Thermally activated asymmetric structural recovery in a soft glassy nano-clay suspension
,”
Soft Matter
9
,
7751
7756
(
2013
).
48.
M. B.
Gordon
,
C. J.
Kloxin
, and
N. J.
Wagner
, “
Structural and rheological aging in model attraction-driven glasses by Rheo-SANS
,”
Soft Matter
17
,
924
935
(
2021
).
49.
A.
Zaccone
,
J. J.
Crassous
, and
M.
Ballauff
, “
Colloidal gelation with variable attraction energy
,”
J. Chem. Phys.
138
,
104908
(
2013
).
50.
R. N.
Zia
,
B. J.
Landrum
, and
W. B.
Russel
, “
A micro-mechanical study of coarsening and rheology of colloidal gels: Cage building, cage hopping, and Smoluchowski’s ratchet
,”
J. Rheol.
58
,
1121
1157
(
2014
).
51.
S. L.
Elliott
,
R. J.
Butera
,
L. H.
Hanus
, and
N. J.
Wagner
, “
Fundamentals of aggregation in concentrated dispersions: Fiber-optic quasielastic light scattering and linear viscoelastic measurements
,”
Faraday Discuss.
123
,
369
383
(
2003
).
52.
M. Y.
Lin
,
H. M.
Lindsay
,
D. A.
Weitz
,
R. C.
Ball
,
R.
Klein
, and
P.
Meakin
, “
Universality in colloid aggregation
,”
Nature
339
,
360
362
(
1989
).
53.

We further note that the magnitude of spontaneous thermal fluctuations of bound particles should depend on the effective spring constant of the bonds κ and the number of contacts the particles make, zavgκrloc2kBT, where rloc is the average particle localization length, and zavg=1Nz=112zn(z,t) is the average contact number. Noting further that E = Nc(TθT)zavg/2, when combined with G′ ∼ E, leads to the familiar result GakBTrloc2.35 

54.
M.
Kohl
,
R. F.
Capellmann
,
M.
Laurati
,
S. U.
Egelhaaf
, and
M.
Schmiedeberg
, “
Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states
,”
Nat. Commun.
7
,
11817
(
2016
).
55.
J.
Rouwhorst
,
C.
Ness
,
S.
Stoyanov
,
A.
Zaccone
, and
P.
Schall
, “
Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction
,”
Nat. Commun.
11
,
3558
(
2020
).
56.
B.
Keshavarz
,
D. G.
Rodrigues
,
J.-B.
Champenois
,
M. G.
Frith
,
J.
Ilavsky
,
M.
Geri
,
T.
Divoux
,
G. H.
McKinley
, and
A.
Poulesquen
, “
Time–connectivity superposition and the gel/glass duality of weak colloidal gels
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2022339118
(
2021
).
57.
J. M.
van Doorn
,
J.
Bronkhorst
,
R.
Higler
,
T.
van de Laar
, and
J.
Sprakel
, “
Linking particle dynamics to local connectivity in colloidal gels
,”
Phys. Rev. Lett.
118
,
188001
(
2017
).
58.
H.
Tsurusawa
,
S.
Arai
, and
H.
Tanaka
, “
A unique route of colloidal phase separation yields stress-free gels
,”
Sci. Adv.
6
,
eabb8107
(
2020
).
59.
M.
Nabizadeh
and
S.
Jamali
, “
Life and death of colloidal bonds control the rate-dependent rheology of gels
,”
Nat. Commun.
12
,
4274
(
2021
).
60.
A. J.
Kovacs
,
J. J.
Aklonis
,
J. M.
Hutchinson
, and
A. R.
Ramos
, “
Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory
,”
J. Polym. Sci., Polym. Phys. Ed.
17
,
1097
1162
(
1979
).
61.
L.
Berthier
and
P. C. W.
Holdsworth
, “
Surfing on a critical line: Rejuvenation without chaos, memory without a hierarchical phase space
,”
Europhys. Lett.
58
,
35
41
(
2002
).
62.
L.
Berthier
and
J.-P.
Bouchaud
, “
Geometrical aspects of aging and rejuvenation in the Ising spin glass: A numerical study
,”
Phys. Rev. B
66
,
054404
(
2002
).
63.
M.
Peyrard
and
J. L.
Garden
, “
Memory effects in glasses: Insights into the thermodynamics of out-of-equilibrium systems revealed by a simple model of the Kovacs effect
,”
Phys. Rev. E
102
,
052122
(
2020
).
64.
F.
Lefloch
,
J.
Hammann
,
M.
Ocio
, and
E.
Vincent
, “
Can aging phenomena discriminate between the droplet model and a hierarchical description in spin glasses?
,”
Europhys. Lett.
18
,
647
652
(
1992
).
65.
V.
Dupuis
,
E.
Vincent
,
J.-P.
Bouchaud
,
J.
Hammann
,
A.
Ito
, and
H. A.
Katori
, “
Aging, rejuvenation, and memory effects in Ising and Heisenberg spin glasses
,”
Phys. Rev. B
64
,
174204
(
2001
).
66.
P. E.
Jönsson
,
R.
Mathieu
,
P.
Nordblad
,
H.
Yoshino
,
H. A.
Katori
, and
A.
Ito
, “
Nonequilibrium dynamics of spin glasses: Examination of the ghost domain scenario
,”
Phys. Rev. B
70
,
174402
(
2004
).
67.
C.
Scalliet
and
L.
Berthier
, “
Rejuvenation and memory effects in a structural glass
,”
Phys. Rev. Lett.
122
,
255502
(
2019
).
68.
K.
Jonason
,
E.
Vincent
,
J.
Hammann
,
J. P.
Bouchaud
, and
P.
Nordblad
, “
Memory and chaos effects in spin glasses
,”
Phys. Rev. Lett.
81
,
3243
3246
(
1998
).
69.
H.
Yardimci
and
R. L.
Leheny
, “
Memory in an aging molecular glass
,”
Europhys. Lett.
62
,
203
209
(
2003
).
70.
A.
Parker
and
V.
Normand
, “
Glassy dynamics of gelatin gels
,”
Soft Matter
6
,
4916
4919
(
2010
).

Supplementary Material

You do not currently have access to this content.