Gelation offers a powerful strategy to assemble plasmonic nanocrystal networks incorporating both the distinctive optical properties of constituent building blocks and customizable collective properties. Beyond what a single-component assembly can offer, the characteristics of nanocrystal networks can be tuned in a broader range when two or more components are intimately combined. Here, we demonstrate mixed nanocrystal gel networks using thermoresponsive metal–terpyridine links that enable rapid gel assembly and disassembly with thermal cycling. Plasmonic indium oxide nanocrystals with different sizes, doping concentrations, and shapes are reliably intermixed in linked gel assemblies, exhibiting collective infrared absorption that reflects the contributions of each component while also deviating systematically from a linear combination of the spectra for single-component gels. We extend a many-bodied, mutual polarization method to simulate the optical response of mixed nanocrystal gels, reproducing the experimental trends with no free parameters and revealing that spectral deviations originate from cross-coupling between nanocrystals with distinct plasmonic properties. Our thermoreversible linking strategy directs the assembly of mixed nanocrystal gels with continuously tunable far- and near-field optical properties that are distinct from those of the building blocks or mixed close-packed structures.

1.
S. V.
Gaponenko
,
Optical Properties of Semiconductor Nanocrystals
(
Cambridge University Press
,
1998
), Vol. 23.
2.
S.
Link
and
M. A.
El-Sayed
, “
Optical properties and ultrafast dynamics of metallic nanocrystals
,”
Annu. Rev. Phys. Chem.
54
,
331
366
(
2003
).
3.
V.
Giannini
,
A. I.
Fernández-Domínguez
,
S. C.
Heck
, and
S. A.
Maier
, “
Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters
,”
Chem. Rev.
111
,
3888
3912
(
2011
).
4.
A.
Agrawal
,
S. H.
Cho
,
O.
Zandi
,
S.
Ghosh
,
R. W.
Johns
, and
D. J.
Milliron
, “
Localized surface plasmon resonance in semiconductor nanocrystals
,”
Chem. Rev.
118
,
3121
3207
(
2018
).
5.
J.
Shamsi
,
A. S.
Urban
,
M.
Imran
,
L.
De Trizio
, and
L.
Manna
, “
Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties
,”
Chem. Rev.
119
,
3296
3348
(
2019
).
6.
R.
Fu
,
S.
Liu
,
Q.
Shi
,
Y.
Lu
,
Z.
Yong
, and
W.
Cheng
, “
Active strain engineering of soft plasmene nanosheets by thermoresponsive hydrogels
,”
J. Mater. Chem. C
9
,
12720
12726
(
2021
).
7.
S.
Wang
,
Y.
Zhang
,
X.
Qin
,
L.
Zhang
,
Z.
Zhang
,
W.
Lu
, and
M.
Liu
, “
Guanosine assembly enabled gold nanorods with dual thermo- and photoswitchable plasmonic chiroptical activity
,”
ACS Nano
14
,
6087
6096
(
2020
).
8.
X.
Wang
,
D.
Xu
,
B.
Jaquet
,
Y.
Yang
,
J.
Wang
,
H.
Huang
,
Y.
Chen
,
C.
Gerhard
, and
K.
Zhang
, “
Structural colors by synergistic birefringence and surface plasmon resonance
,”
ACS Nano
14
,
16832
16839
(
2020
).
9.
X.
Wen
,
H.
Fan
,
L.
Jing
,
M.
Deng
,
X.
Huang
,
T.
Jiao
,
L.
Zhang
, and
M.
Liu
, “
Competitive induction of circularly polarized luminescence of CdSe/ZnS quantum dots in a nucleotide–amino acid hydrogel
,”
Mater. Adv.
3
,
682
688
(
2022
).
10.
I. U.
Arachchige
and
S. L.
Brock
, “
Sol–gel methods for the assembly of metal chalcogenide quantum dots
,”
Acc. Chem. Res.
40
,
801
809
(
2007
).
11.
N.
Gaponik
,
A.-K.
Herrmann
, and
A.
Eychmüller
, “
Colloidal nanocrystal-based gels and aerogels: Material aspects and application perspectives
,”
J. Phys. Chem. Lett.
3
,
8
17
(
2011
).
12.
F.
Matter
,
A. L.
Luna
, and
M.
Niederberger
, “
From colloidal dispersions to aerogels: How to master nanoparticle gelation
,”
Nano Today
30
,
100827
(
2020
).
13.
Z. M.
Sherman
,
A. M.
Green
,
M. P.
Howard
,
E. V.
Anslyn
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Colloidal nanocrystal gels from thermodynamic principles
,”
Acc. Chem. Res.
54
,
798
807
(
2021
).
14.
A. M.
Green
,
C. K.
Ofosu
,
J.
Kang
,
E. V.
Anslyn
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Assembling inorganic nanocrystal gels
,”
Nano Lett.
22
,
1457
1466
(
2022
).
15.
A. B.
Pawar
and
I.
Kretzschmar
, “
Fabrication, assembly, and application of patchy particles
,”
Macromol. Rapid Commun.
31
,
150
168
(
2010
).
16.
W.
Li
,
H.
Palis
,
R.
Mérindol
,
J.
Majimel
,
S.
Ravaine
, and
E.
Duguet
, “
Colloidal molecules and patchy particles: Complementary concepts, synthesis and self-assembly
,”
Chem. Soc. Rev.
49
,
1955
1976
(
2020
).
17.
B. A.
Lindquist
,
R. B.
Jadrich
,
D. J.
Milliron
, and
T. M.
Truskett
, “
On the formation of equilibrium gels via a macroscopic bond limitation
,”
J. Chem. Phys.
145
,
074906
(
2016
).
18.
A.
Singh
,
B. A.
Lindquist
,
G. K.
Ong
,
R. B.
Jadrich
,
A.
Singh
,
H.
Ha
,
C. J.
Ellison
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Linking semiconductor nanocrystals into gel networks through all-inorganic bridges
,”
Angew. Chem., Int. Ed.
54
,
14840
14844
(
2015
).
19.
V.
Sayevich
,
B.
Cai
,
A.
Benad
,
D.
Haubold
,
L.
Sonntag
,
N.
Gaponik
,
V.
Lesnyak
, and
A.
Eychmüller
, “
3D assembly of all-inorganic colloidal nanocrystals into gels and aerogels
,”
Angew. Chem., Int. Ed.
55
,
6334
6338
(
2016
).
20.
M. P.
Howard
,
R. B.
Jadrich
,
B. A.
Lindquist
,
F.
Khabaz
,
R. T.
Bonnecaze
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Structure and phase behavior of polymer-linked colloidal gels
,”
J. Chem. Phys.
151
,
124901
(
2019
).
21.
F.
Bomboi
,
D.
Caprara
,
J.
Fernandez-Castanon
, and
F.
Sciortino
, “
Cold-swappable DNA gels
,”
Nanoscale
11
,
9691
9697
(
2019
).
22.
J.
Lowensohn
,
B.
Oyarzún
,
G. N.
Paliza
,
B. M.
Mognetti
, and
W. B.
Rogers
, “
Linker-mediated phase behavior of DNA-coated colloids
,”
Phys. Rev. X
9
,
041054
(
2019
).
23.
M. N.
Dominguez
,
M. P.
Howard
,
J. M.
Maier
,
S. A.
Valenzuela
,
Z. M.
Sherman
,
J. F.
Reuther
,
L. C.
Reimnitz
,
J.
Kang
,
S. H.
Cho
,
S. L.
Gibbs
,
A. K.
Menta
,
D. L.
Zhuang
,
A.
van der Stok
,
S. J.
Kline
,
E. V.
Anslyn
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Assembly of linked nanocrystal colloids by reversible covalent bonds
,”
Chem. Mater.
32
,
10235
10245
(
2020
).
24.
J.
Song
,
M. H.
Rizvi
,
B. B.
Lynch
,
J.
Ilavsky
,
D.
Mankus
,
J. B.
Tracy
,
G. H.
McKinley
, and
N.
Holten-Andersen
, “
Programmable anisotropy and percolation in supramolecular patchy particle gels
,”
ACS Nano
14
,
17018
17027
(
2020
).
25.
M. P.
Howard
,
Z. M.
Sherman
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Wertheim’s thermodynamic perturbation theory with double-bond association and its application to colloid–linker mixtures
,”
J. Chem. Phys.
154
,
024905
(
2021
).
26.
M. P.
Howard
,
Z. M.
Sherman
,
A. N.
Sreenivasan
,
S. A.
Valenzuela
,
E. V.
Anslyn
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Effects of linker flexibility on phase behavior and structure of linked colloidal gels
,”
J. Chem. Phys.
154
,
074901
(
2021
).
27.
R.
Braz Teixeira
,
D.
de Las Heras
,
J. M.
Tavares
, and
M. M.
Telo da Gama
, “
Phase behavior of a binary mixture of patchy colloids: Effect of particle size and gravity
,”
J. Chem. Phys.
155
,
044903
(
2021
).
28.
X.
Xia
,
H.
Hu
,
M. P.
Ciamarra
, and
R.
Ni
, “
Linker-mediated self-assembly of mobile DNA-coated colloids
,”
Sci. Adv.
6
,
eaaz6921
(
2020
).
29.
J.
Kang
,
S. A.
Valenzuela
,
E. Y.
Lin
,
M. N.
Dominguez
,
Z. M.
Sherman
,
T. M.
Truskett
,
E. V.
Anslyn
, and
D. J.
Milliron
, “
Colorimetric quantification of linking in thermoreversible nanocrystal gel assemblies
,”
Sci. Adv.
8
,
eabm7364
(
2022
).
30.
M.
Gouveia
,
C. S.
Dias
, and
J. M.
Tavares
, “
Percolation in binary mixtures of linkers and particles: Chaining vs branching
,”
J. Chem. Phys.
157
,
164903
(
2022
); arXiv:2208.10869.
31.
M.
Singh
,
Z. M.
Sherman
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Linker-templated structure tuning of optical response in plasmonic nanoparticle gels
,”
J. Phys. Chem. C
126
,
16885
16893
(
2022
).
32.
T.
Kwon
,
T. A.
Wilcoxson
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Dynamics of equilibrium-linked colloidal networks
,”
J. Chem. Phys.
157
,
184902
(
2022
); arXiv:2209.04580.
33.
A.
Nag
,
D. S.
Chung
,
D. S.
Dolzhnikov
,
N. M.
Dimitrijevic
,
S.
Chattopadhyay
,
T.
Shibata
, and
D. V.
Talapin
, “
Effect of metal ions on photoluminescence, charge transport, magnetic and catalytic properties of all-inorganic colloidal nanocrystals and nanocrystal solids
,”
J. Am. Chem. Soc.
134
,
13604
13615
(
2012
).
34.
I. D.
Stoev
,
T.
Cao
,
A.
Caciagli
,
J.
Yu
,
C.
Ness
,
R.
Liu
,
R.
Ghosh
,
T.
O’Neill
,
D.
Liu
, and
E.
Eiser
, “
On the role of flexibility in linker-mediated DNA hydrogels
,”
Soft Matter
16
,
990
1001
(
2020
).
35.
J.
Yang
,
N. J.
Kramer
,
K. S.
Schramke
,
L. M.
Wheeler
,
L. V.
Besteiro
,
C. J.
Hogan
, Jr.
,
A. O.
Govorov
, and
U. R.
Kortshagen
, “
Broadband absorbing exciton–plasmon metafluids with narrow transparency windows
,”
Nano Lett.
16
,
1472
1477
(
2016
).
36.
E. V.
Shevchenko
,
D. V.
Talapin
,
N. A.
Kotov
,
S.
O’Brien
, and
C. B.
Murray
, “
Structural diversity in binary nanoparticle superlattices
,”
Nature
439
,
55
59
(
2006
).
37.
E. V.
Shevchenko
,
D. V.
Talapin
,
C. B.
Murray
, and
S.
O’Brien
, “
Structural characterization of self-assembled multifunctional binary nanoparticle superlattices
,”
J. Am. Chem. Soc.
128
,
3620
3637
(
2006
).
38.
K. L.
Young
,
M. B.
Ross
,
M. G.
Blaber
,
M.
Rycenga
,
M. R.
Jones
,
C.
Zhang
,
A. J.
Senesi
,
B.
Lee
,
G. C.
Schatz
, and
C. A.
Mirkin
, “
Using DNA to design plasmonic metamaterials with tunable optical properties
,”
Adv. Mater.
26
,
653
659
(
2014
).
39.
E. V.
Shevchenko
,
M.
Ringler
,
A.
Schwemer
,
D. V.
Talapin
,
T. A.
Klar
,
A. L.
Rogach
,
J.
Feldmann
, and
A. P.
Alivisatos
, “
Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties
,”
J. Am. Chem. Soc.
130
,
3274
3275
(
2008
).
40.
K.
Hosoki
,
T.
Tayagaki
,
S.
Yamamoto
,
K.
Matsuda
, and
Y.
Kanemitsu
, “
Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films
,”
Phys. Rev. Lett.
100
,
207404
(
2008
).
41.
M.
Cargnello
,
A. C.
Johnston-Peck
,
B. T.
Diroll
,
E.
Wong
,
B.
Datta
,
D.
Damodhar
,
V. V. T.
Doan-Nguyen
,
A. A.
Herzing
,
C. R.
Kagan
, and
C. B.
Murray
, “
Substitutional doping in nanocrystal superlattices
,”
Nature
524
,
450
453
(
2015
).
42.
Q.
Shi
,
D.
Sikdar
,
R.
Fu
,
K. J.
Si
,
D.
Dong
,
Y.
Liu
,
M.
Premaratne
, and
W.
Cheng
, “
2D binary plasmonic nanoassemblies with semiconductor n/p-doping-like properties
,”
Adv. Mater.
30
,
1801118
(
2018
).
43.
V.
Lesnyak
,
A.
Wolf
,
A.
Dubavik
,
L.
Borchardt
,
S. V.
Voitekhovich
,
N.
Gaponik
,
S.
Kaskel
, and
A.
Eychmüller
, “
3D assembly of semiconductor and metal nanocrystals: Hybrid CdTe/Au structures with controlled content
,”
J. Am. Chem. Soc.
133
,
13413
13420
(
2011
).
44.
A.
Wolf
,
V.
Lesnyak
,
N.
Gaponik
, and
A.
Eychmüller
, “
Quantum-dot-based (aero)gels: Control of the optical properties
,”
J. Phys. Chem. Lett.
3
,
2188
2193
(
2012
).
45.
T.
Hendel
,
V.
Lesnyak
,
L.
Kühn
,
A.-K.
Herrmann
,
N. C.
Bigall
,
L.
Borchardt
,
S.
Kaskel
,
N.
Gaponik
, and
A.
Eychmüller
, “
Mixed aerogels from Au and CdTe nanoparticles
,”
Adv. Funct. Mater.
23
,
1903
1911
(
2013
).
46.
A.-K.
Herrmann
,
P.
Formanek
,
L.
Borchardt
,
M.
Klose
,
L.
Giebeler
,
J.
Eckert
,
S.
Kaskel
,
N.
Gaponik
, and
A.
Eychmüller
, “
Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles
,”
Chem. Mater.
26
,
1074
1083
(
2014
).
47.
R.
Wendt
,
B.
Märker
,
A.
Dubavik
,
A.-K.
Herrmann
,
M.
Wollgarten
,
Y. P.
Rakovich
,
A.
Eychmüller
,
K.
Rademann
, and
T.
Hendel
, “
Versatile H2O2-driven mixed aerogel synthesis from CdTe and bimetallic noble metal nanoparticles
,”
J. Mater. Chem. C
5
,
10251
10259
(
2017
).
48.
A.
Freytag
,
C.
Günnemann
,
S.
Naskar
,
S.
Hamid
,
F.
Lübkemann
,
D.
Bahnemann
, and
N. C.
Bigall
, “
Tailoring composition and material distribution in multicomponent cryoaerogels for application in photocatalysis
,”
ACS Appl. Nano Mater.
1
,
6123
6130
(
2018
).
49.
J. L.
Davis
,
K. L.
Silva
, and
S. L.
Brock
, “
Exploiting kinetics for assembly of multicomponent nanoparticle networks with programmable control of heterogeneity
,”
Chem. Commun.
56
,
458
461
(
2020
).
50.
M.
Rosebrock
,
D.
Zámbó
,
P.
Rusch
,
D.
Pluta
,
F.
Steinbach
,
P.
Bessel
,
A.
Schlosser
,
A.
Feldhoff
,
K. D. J.
Hindricks
,
P.
Behrens
,
D.
Dorfs
, and
N. C.
Bigall
, “
Spatial extent of fluorescence quenching in mixed semiconductor–metal nanoparticle gel networks
,”
Adv. Funct. Mater.
31
,
2101628
(
2021
).
51.
P.
Rusch
,
D.
Pluta
,
F.
Lübkemann
,
D.
Dorfs
,
D.
Zámbó
, and
N. C.
Bigall
, “
Temperature and composition dependent optical properties of CdSe/CdS dot/rod-based aerogel networks
,”
ChemPhysChem
23
,
e202100755
(
2022
).
52.
A.
Schlosser
,
J.
Schlenkrich
,
D.
Zámbó
,
M.
Rosebrock
,
R. T.
Graf
,
G.
Escobar Cano
, and
N. C.
Bigall
, “
Interparticle interaction matters: Charge carrier dynamics in hybrid semiconductor–metal cryoaerogels
,”
Adv. Mater. Interfaces
9
,
2200055
(
2022
).
53.
Z. M.
Sherman
,
K.
Kim
,
J.
Kang
,
B. J.
Roman
,
H. S. N.
Crory
,
D. L.
Conrad
,
S. A.
Valenzuela
,
E. Y.
Lin
,
M. N.
Dominguez
,
S. L.
Gibbs
,
E. V.
Anslyn
,
D. J.
Milliron
, and
T. M.
Truskett
, “
Plasmonic response of complex nanoparticle assemblies
,” chemRxiv:2022-rkqw8 (
2022
).
54.
A. W.
Jansons
and
J. E.
Hutchison
, “
Continuous growth of metal oxide nanocrystals: Enhanced control of nanocrystal size and radial dopant distribution
,”
ACS Nano
10
,
6942
6951
(
2016
).
55.
S. H.
Cho
,
S.
Ghosh
,
Z. J.
Berkson
,
J. A.
Hachtel
,
J.
Shi
,
X.
Zhao
,
L. C.
Reimnitz
,
C. J.
Dahlman
,
Y.
Ho
,
A.
Yang
,
Y.
Liu
,
J.-C.
Idrobo
,
B. F.
Chmelka
, and
D. J.
Milliron
, “
Syntheses of colloidal F:In2O3 cubes: Fluorine-induced faceting and infrared plasmonic response
,”
Chem. Mater.
31
,
2661
2676
(
2019
).
56.
S. H.
Cho
,
K. M.
Roccapriore
,
C. K.
Dass
,
S.
Ghosh
,
J.
Choi
,
J.
Noh
,
L. C.
Reimnitz
,
S.
Heo
,
K.
Kim
,
K.
Xie
,
B. A.
Korgel
,
X.
Li
,
J. R.
Hendrickson
,
J. A.
Hachtel
, and
D. J.
Milliron
, “
Spectrally tunable infrared plasmonic F,Sn:In2O3 nanocrystal cubes
,”
J. Chem. Phys.
152
,
014709
(
2020
).
57.
J. A.
Anderson
,
J.
Glaser
, and
S. C.
Glotzer
, “
HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations
,”
Comput. Mater. Sci.
173
,
109363
(
2020
).
58.
H. N. W.
Lekkerkerker
and
R.
Tuinier
,
Colloids and the Depletion Interaction
(
Springer
,
New York
,
2011
).
59.
M. G.
Noro
and
D.
Frenkel
, “
Extended corresponding-states behavior for particles with variable range attractions
,”
J. Chem. Phys.
113
,
2941
2944
(
2000
).
60.
E.
Zaccarelli
,
P. J.
Lu
,
F.
Ciulla
,
D. A.
Weitz
, and
F.
Sciortino
, “
Gelation as arrested phase separation in short-ranged attractive colloid–polymer mixtures
,”
J. Phys.: Condens. Matter
20
,
494242
(
2008
).
61.
C. K.
Ofosu
,
T. M.
Truskett
, and
D. J.
Milliron
, “
Solvent-ligand interactions govern stabilizing repulsions between colloidal metal oxide nanocrystals
,”
J. Phys. Chem. Lett.
13
,
11323
11329
(
2022
); chemRxiv:2022-0hx82 (
2022
).
62.
D. M.
Heyes
and
J. R.
Melrose
, “
Brownian dynamics simulations of model hard-sphere suspensions
,”
J. Non-Newtonian Fluid Mech.
46
,
1
28
(
1993
).
63.
S. L.
Gibbs
,
C. M.
Staller
,
A.
Agrawal
,
R. W.
Johns
,
C. A.
Saez Cabezas
, and
D. J.
Milliron
, “
Intrinsic optical and electronic properties from quantitative analysis of plasmonic semiconductor nanocrystal ensemble optical extinction
,”
J. Phys. Chem. C
124
,
24351
24360
(
2020
).
64.
K.
Hayashi
,
F.
Okamoto
,
S.
Hoshi
,
T.
Katashima
,
D. C.
Zujur
,
X.
Li
,
M.
Shibayama
,
E. P.
Gilbert
,
U.-i.
Chung
,
S.
Ohba
,
T.
Oshika
, and
T.
Sakai
, “
Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body
,”
Nat. Biomed. Eng.
1
,
0044
(
2017
).
65.
E.
Auyeung
,
T. I. N. G.
Li
,
A. J.
Senesi
,
A. L.
Schmucker
,
B. C.
Pals
,
M. O.
de Ia Cruz
, and
C. A.
Mirkin
, “
DNA-mediated nanoparticle crystallization into Wulff polyhedra
,”
Nature
505
,
73
77
(
2014
).
66.
R. T.
Scarlett
,
M. T.
Ung
,
J. C.
Crocker
, and
T.
Sinno
, “
A mechanistic view of binary colloidal superlattice formation using DNA-directed interactions
,”
Soft Matter
7
,
1912
1925
(
2011
).
67.
P. J.
Santos
,
P. A.
Gabrys
,
L. Z.
Zornberg
,
M. S.
Lee
, and
R. J.
Macfarlane
, “
Macroscopic materials assembled from nanoparticle superlattices
,”
Nature
591
,
586
591
(
2021
).
68.
D.
Jishkariani
,
K. C.
Elbert
,
Y.
Wu
,
J. D.
Lee
,
M.
Hermes
,
D.
Wang
,
A.
Van Blaaderen
, and
C. B.
Murray
, “
Nanocrystal core size and shape substitutional doping and underlying crystalline order in nanocrystal superlattices
,”
ACS Nano
13
,
5712
5719
(
2019
).
69.
S. L.
Gibbs
,
C. M.
Staller
, and
D. J.
Milliron
, “
Surface depletion layers in plasmonic metal oxide nanocrystals
,”
Acc. Chem. Res.
52
,
2516
2524
(
2019
).
70.
J. F.
Reuther
,
S. D.
Dahlhauser
, and
E. V.
Anslyn
, “
Tunable orthogonal reversible covalent (TORC) bonds: Dynamic chemical control over molecular assembly
,”
Angew. Chem., Int. Ed.
58
,
74
85
(
2019
).

Supplementary Material

You do not currently have access to this content.