Although photothermal imaging was originally designed to detect individual molecules that do not emit or small nanoparticles that do not scatter, the technique is now being applied to image and spectroscopically characterize larger and more sophisticated nanoparticle structures that scatter light strongly. Extending photothermal measurements into this regime, however, requires revisiting fundamental assumptions made in the interpretation of the signal. Herein, we present a theoretical analysis of the wavelength-resolved photothermal image and its extension to the large particle scattering regime, where we find the photothermal signal to inherit a nonlinear dependence upon pump intensity, together with a contraction of the full-width-at-half-maximum of its point spread function. We further analyze theoretically the extent to which photothermal spectra can be interpreted as an absorption spectrum measure, with deviations between the two becoming more prominent with increasing pump intensities. Companion experiments on individual 10, 20, and 100 nm radius gold nanoparticles evidence the predicted nonlinear pump power dependence and image contraction, verifying the theory and demonstrating new aspects of photothermal imaging relevant to a broader class of targets.

1.
S.
Adhikari
,
P.
Spaeth
,
A.
Kar
,
M. D.
Baaske
,
S.
Khatua
, and
M.
Orrit
, “
Photothermal microscopy: Imaging the optical absorption of single nanoparticles and single molecules
,”
ACS Nano
14
,
16414
16445
(
2020
).
2.
P.
Vermeulen
,
L.
Cognet
, and
B.
Lounis
, “
Photothermal microscopy: Optical detection of small absorbers in scattering environments
,”
J. Microsc.
254
,
115
121
(
2014
).
3.
D.
Boyer
,
P.
Tamarat
,
A.
Maali
,
B.
Lounis
, and
M.
Orrit
, “
Photothermal imaging of nanometer-sized metal particles among scatterers
,”
Science
297
,
1160
1163
(
2002
).
4.
S.
Berciaud
,
L.
Cognet
,
G. A.
Blab
, and
B.
Lounis
, “
Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals
,”
Phys. Rev. Lett.
93
,
257402
(
2004
).
5.
A.
Gaiduk
,
P. V.
Ruijgrok
,
M.
Yorulmaz
, and
M.
Orrit
, “
Detection limits in photothermal microscopy
,”
Chem. Sci.
1
,
343
350
(
2010
).
6.
Y.-C.
Huang
,
T.-H.
Chen
,
J.-Y.
Juo
,
S.-W.
Chu
, and
C.-L.
Hsieh
, “
Quantitative imaging of single light-absorbing nanoparticles by widefield interferometric photothermal microscopy
,”
ACS Photonics
8
,
592
602
(
2021
).
7.
Z.-C.
Zeng
,
H.
Wang
,
P.
Johns
,
G. V.
Hartland
, and
Z. D.
Schultz
, “
Photothermal microscopy of coupled nanostructures and the impact of nanoscale heating in surface-enhanced Raman spectroscopy
,”
J. Phys. Chem. C
121
,
11623
11631
(
2017
).
8.
K. A.
Knapper
,
F.
Pan
,
M. T.
Rea
,
E. H.
Horak
,
J. D.
Rogers
, and
R. H.
Goldsmith
, “
Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators
,”
Opt. Express
26
,
25020
25030
(
2018
).
9.
U.
Bhattacharjee
,
C. A.
West
,
S. A.
Hosseini Jebeli
,
H. J.
Goldwyn
,
X.-T.
Kong
,
Z.
Hu
,
E. K.
Beutler
,
W.-S.
Chang
,
K. A.
Willets
,
S.
Link
, and
D. J.
Masiello
, “
Active far-field control of the thermal near-field via plasmon hybridization
,”
ACS Nano
13
,
9655
9663
(
2019
).
10.
S. A.
Hosseini Jebeli
,
C. A.
West
,
S. A.
Lee
,
H. J.
Goldwyn
,
C. R.
Bilchak
,
Z.
Fakhraai
,
K. A.
Willets
,
S.
Link
, and
D. J.
Masiello
, “
Wavelength-dependent photothermal imaging probes nanoscale temperature differences among subdiffraction coupled plasmonic nanorods
,”
Nano Lett.
21
,
5386
(
2021
).
11.
M.
Yorulmaz
,
S.
Nizzero
,
A.
Hoggard
,
L.-Y.
Wang
,
Y.-Y.
Cai
,
M.-N.
Su
,
W.-S.
Chang
, and
S.
Link
, “
Single-particle absorption spectroscopy by photothermal contrast
,”
Nano Lett.
15
,
3041
3047
(
2015
).
12.
K. D.
Heylman
,
N.
Thakkar
,
E. H.
Horak
,
S. C.
Quillin
,
C.
Cherqui
,
K. A.
Knapper
,
D. J.
Masiello
, and
R. H.
Goldsmith
, “
Optical microresonators as single-particle absorption spectrometers
,”
Nat. Photonics
10
,
788
795
(
2016
).
13.
N.
Thakkar
,
M. T.
Rea
,
K. C.
Smith
,
K. D.
Heylman
,
S. C.
Quillin
,
K. A.
Knapper
,
E. H.
Horak
,
D. J.
Masiello
, and
R. H.
Goldsmith
, “
Sculpting fano resonances to control photonic–plasmonic hybridization
,”
Nano Lett.
17
,
6927
6934
(
2017
).
14.
F.
Pan
,
K. C.
Smith
,
H. L.
Nguyen
,
K. A.
Knapper
,
D. J.
Masiello
, and
R. H.
Goldsmith
, “
Elucidating energy pathways through simultaneous measurement of absorption and transmission in a coupled plasmonic–photonic cavity
,”
Nano Lett.
20
,
50
58
(
2020
).
15.
Z.
Shi
,
J.
Huang
,
X.
Huang
,
Y.
Huang
,
L.
Wu
, and
Q.
Li
, “
Resonant scattering enhanced interferometric scattering microscopy
,”
Nanoscale
12
,
7969
7975
(
2020
).
16.
R. W.
Taylor
and
V.
Sandoghdar
, “
Interferometric scattering microscopy: Seeing single nanoparticles and molecules via Rayleigh scattering
,”
Nano Lett.
19
,
4827
4835
(
2019
).
17.
G.
Young
and
P.
Kukura
, “
Interferometric scattering microscopy
,”
Annu. Rev. Phys. Chem.
70
,
301
322
(
2019
).
18.
P. M. R.
Paulo
,
A.
Gaiduk
,
F.
Kulzer
,
S. F. G.
Krens
,
H. P.
Spaink
,
T.
Schmidt
, and
M.
Orrit
, “
Photothermal correlation spectroscopy of gold nanoparticles in solution
,”
J. Phys. Chem. C
113
,
11451
11457
(
2009
).
19.
M.
Selmke
and
F.
Cichos
, “
The physics of the photothermal detection of single absorbing nano-objects: A review
,” arXiv:1510.08669 (
2015
).
20.
H. J.
Goldwyn
,
S.
Link
, and
D. J.
Masiello
, “
Resolving resonance effects in the theory of single particle photothermal imaging
,” arXiv:2103.01494 (
2021
).
21.
B. S.
Brown
and
G. V.
Hartland
, “
Influence of thermal diffusion on the spatial resolution in photothermal microscopy
,”
J. Phy. Chem. C
126
,
3560
3568
(
2022
).
22.
M.
Selmke
,
M.
Braun
, and
F.
Cichos
, “
Gaussian beam photothermal single particle microscopy
,”
J. Opt. Soc. Am. A
29
,
2237
2241
(
2012
).
23.
M. D.
Baaske
,
N.
Asgari
,
P.
Spaeth
,
S.
Adhikari
,
D.
Punj
, and
M.
Orrit
, “
Photothermal spectro-microscopy as benchmark for optoplasmonic bio-detection assays
,”
J. Phys. Chem. C
125
,
25087
25093
(
2021
).
24.
H. Y.
Chung
,
P. T.
Leung
, and
D. P.
Tsai
, “
Dynamic modifications of polarizability for large metallic spheroidal nanoshells
,”
J. Chem. Phys.
131
,
124122
(
2009
).
25.
A.
Moroz
, “
Depolarization field of spheroidal particles
,”
J. Opt. Soc. Am. B
26
,
517
527
(
2009
).

Supplementary Material

You do not currently have access to this content.