Fluorescence-detected multidimensional electronic spectroscopy (fMES) promises high sensitivity compared to conventional approaches and is an emerging spectroscopic approach toward combining the advantages of MES with the spatial resolution of a microscope. Here, we present a visible white light continuum-based fMES spectrometer and systematically explore the sensitivity enhancement expected from fluorescence detection. As a demonstration of sensitivity, we report room temperature two-dimensional coherence maps of vibrational quantum coherences in a laser dye at optical densities of ∼2–3 orders of magnitude lower than conventional approaches. This high sensitivity is enabled by a combination of biased sampling along the optical coherence time axes and a rapid scan of the pump–probe waiting time T at each sample. A combination of this approach with acousto-optic phase modulation and phase-sensitive lock-in detection enables measurements of room temperature vibrational wavepackets even at the lowest ODs. Alternative faster data collection schemes, which are enabled by the flexibility of choosing a non-uniform undersampled grid in the continuous T scanning approach, are also demonstrated.

1.
D. M.
Jonas
, “
Optical analogs of 2D NMR
,”
Science
300
(
6 June
),
1515
1517
(
2003
).
2.
W. P.
Aue
,
E.
Bartholdi
, and
R. R.
Ernst
, “
Two-dimensional spectroscopy. Application to nuclear magnetic resonance
,”
J. Chem. Phys.
64
(
5
),
2229
2246
(
1976
).
3.
D.
Finkelstein-Shapiro
,
P.-A.
Mante
,
S.
Sarisozen
,
L.
Wittenbecher
,
I.
Minda
,
S.
Balci
,
T.
Pullerits
, and
D.
Zigmantas
, “
Understanding radiative transitions and relaxation pathways in plexcitons
,”
Chem
7
(
4
),
1092
1107
(
2021
).
4.
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H. G.
Duan
,
J.
Hauer
,
U.
Kleinekathöfer
,
T. L. C.
Jansen
,
T.
Mančal
,
R. J. D.
Miller
,
J. P.
Ogilvie
,
V. I.
Prokhorenko
,
T.
Renger
,
H. S.
Tan
,
R.
Tempelaar
,
M.
Thorwart
,
E.
Thyrhaug
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Quantum biology revisited
,”
Sci. Adv.
6
(
14
),
eaaz4888
(
2020
).
5.
P. D.
Dahlberg
,
A. F.
Fidler
,
J. R.
Caram
,
P. D.
Long
, and
G. S.
Engel
, “
Energy transfer observed in live cells using two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
4
(
21
),
3636
3640
(
2013
).
6.
J.
Dostál
,
J.
Pšenčík
, and
D.
Zigmantas
, “
In situ mapping of the energy flow through the entire photosynthetic apparatus
,”
Nat. Chem.
8
,
705
(
2016
).
7.
F. D.
Fuller
and
J. P.
Ogilvie
, “
Experimental implementations of two-dimensional Fourier transform electronic spectroscopy
,”
Annu. Rev. Phys. Chem.
66
(
1
),
667
690
(
2015
).
8.
V.
Tiwari
, “
Multidimensional electronic spectroscopy in high-definition - combining spectral, temporal and spatial resolutions
,”
J. Chem. Phys.
154
,
230901
(
2021
).
9.
S.
Roeding
and
B.
Tobias
, “
Coherent two-dimensional electronic mass spectrometry
,”
Nat. Commun.
9
(
1
),
2519
(
2018
).
10.
L.
Bruder
,
U.
Bangert
,
M.
Binz
,
D.
Uhl
,
R.
Vexiau
,
N.
Bouloufa-Maafa
,
O.
Dulieu
, and
F.
Stienkemeier
, “
Coherent multidimensional spectroscopy of dilute gas-phase nanosystems
,”
Nat. Commun.
9
(
1
),
4823
(
2018
).
11.
J. A.
Cina
, “
Wave-packet interferometry and molecular state reconstruction: Spectroscopic adventures on the left-hand side of the Schrödinger equation
,”
Annu. Rev. Phys. Chem.
59
(
1
),
319
342
(
2008
).
12.
S.
Mueller
,
J.
Lüttig
,
P.
Malý
,
L.
Ji
,
J.
Han
,
M.
Moos
,
T. B.
Marder
,
U. H. F.
Bunz
,
A.
Dreuw
,
C.
Lambert
, and
T.
Brixner
, “
Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways
,”
Nat. Commun.
10
(
1
),
4735
(
2019
).
13.
P. F.
Tekavec
,
G. A.
Lott
, and
A. H.
Marcus
, “
Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation
,”
J. Chem. Phys.
127
(
21
),
214307
214327
(
2007
).
14.
S.
Goetz
,
D.
Li
,
V.
Kolb
,
J.
Pflaum
, and
T.
Brixner
, “
Coherent two-dimensional fluorescence micro-spectroscopy
,”
Opt. Express
26
(
4
),
3915
3925
(
2018
).
15.
V.
Tiwari
,
Y. A.
Matutes
,
A. T.
Gardiner
,
T. L. C.
Jansen
,
R. J.
Cogdell
, and
J. P.
Ogilvie
, “
Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria
,”
Nat. Commun.
9
(
1
),
4219
(
2018
).
16.
A. K.
De
,
D.
Monahan
,
J. M.
Dawlaty
, and
G. R.
Fleming
, “
Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling
,”
J. Chem. Phys.
140
(
19
),
194201
(
2014
).
17.
J. N.
Mastron
and
A.
Tokmakoff
, “
Fourier transform fluorescence-encoded infrared spectroscopy
,”
J. Phys. Chem. A
122
(
2
),
554
562
(
2018
).
18.
D.
Agathangelou
,
A.
Javed
,
F.
Sessa
,
X.
Solinas
,
M.
Joffre
, and
J. P.
Ogilvie
, “
Phase-modulated rapid-scanning fluorescence-detected two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
155
(
9
),
094201
(
2021
).
19.
J. A.
Moon
, “
Optimization of signal-to-noise ratios in pump-probe spectroscopy
,”
Rev. Sci. Instrum.
64
(
7
),
1775
1778
(
1993
).
20.
G.
Auböck
,
C.
Consani
,
R.
Monni
,
A.
Cannizzo
,
F.
van Mourik
, and
M.
Chergui
, “
Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate
,”
Rev. Sci. Instrum.
83
(
9
),
093105
(
2012
).
21.
B.
Lang
, “
Photometrics of ultrafast and fast broadband electronic transient absorption spectroscopy: State of the art
,”
Rev. Sci. Instrum.
89
(
9
),
093112
(
2018
).
22.
M.
Bradler
and
E.
Riedle
, “
Temporal and spectral correlations in bulk continua and improved use in transient spectroscopy
,”
J. Opt. Soc. Am. B
31
(
7
),
1465
1475
(
2014
).
23.
J. N.
Sanders
,
S. K.
Saikin
,
S.
Mostame
,
X.
Andrade
,
J. R.
Widom
,
A. H.
Marcus
, and
A.
Aspuru-Guzik
, “
Compressed sensing for multidimensional spectroscopy experiments
,”
J. Phys. Chem. Lett.
3
(
18
),
2697
2702
(
2012
).
24.
J.
Lavoie
,
T.
Landes
,
A.
Tamimi
,
B. J.
Smith
,
A. H.
Marcus
, and
M. G.
Raymer
, “
Phase-modulated interferometry, spectroscopy, and refractometry using entangled photon pairs
,”
Adv. Quantum Technol.
3
(
11
),
1900114
(
2020
).
25.
J.
Kasprzak
,
B.
Patton
,
V.
Savona
, and
W.
Langbein
, “
Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging
,”
Nat. Photonics
5
(
1
),
57
63
(
2011
).
26.
T. M.
Autry
,
G.
Moody
,
J.
Fraser
,
C.
McDonald
,
R. P.
Mirin
, and
K.
Silverman
, “
Single-scan acquisition of multiple multidimensional spectra
,”
Optica
6
(
6
),
735
744
(
2019
).
27.
E. W.
Martin
,
J.
Horng
,
H. G.
Ruth
,
E.
Paik
,
M.-H.
Wentzel
,
H.
Deng
, and
S. T.
Cundiff
, “
Encapsulation narrows and preserves the excitonic homogeneous linewidth of exfoliated monolayer MoSe2
,”
Phys. Rev. Appl.
14
(
2
),
21002
(
2020
).
28.
G.
Nardin
,
T. M.
Autry
,
K. L.
Silverman
, and
S. T.
Cundiff
, “
Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure
,”
Opt. Express
21
(
23
),
28617
28627
(
2013
).
29.
K. J.
Karki
,
J. R.
Widom
,
J.
Seibt
,
I.
Moody
,
M. C.
Lonergan
,
T.
Pullerits
, and
A. H.
Marcus
, “
Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell
,”
Nat. Commun.
5
,
5869
(
2014
).
30.
N. F.
Scherer
,
R. J.
Carlson
,
A.
Matro
,
M.
Du
,
A. J.
Ruggiero
,
V.
Romero‐Rochin
,
J. A.
Cina
,
G. R.
Fleming
, and
S. A.
Rice
, “
Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses
,”
J. Chem. Phys.
95
(
3
),
1487
1511
(
1991
).
31.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
32.
E. J.
Heller
, “
The semiclassical way to molecular spectroscopy
,”
Acc. Chem. Res.
14
(
12
),
368
375
(
1981
).
33.
J.
Ryu
,
S. D.
Park
,
D.
Baranov
,
I.
Rreza
,
J. S.
Owen
, and
D. M.
Jonas
, “
Relations between absorption, emission, and excited state chemical potentials from nanocrystal 2D spectra
,”
Sci. Adv.
7
(
22
),
eabf4741
(
2021
).
34.
I.
Amat-Roldán
,
I.
Cormack
,
P.
Loza-Alvarez
,
E.
Gualda
, and
D.
Artigas
, “
Ultrashort pulse characterisation with SHG collinear-FROG
,”
Opt. Express
12
(
6
),
1169
1178
(
2004
).
35.
G.
Stibenz
and
G. n.
Steinmeyer
, “
Interferometric frequency-resolved optical gating
,”
Opt. Express
13
(
7
),
2617
2626
(
2005
).
36.
Y.
Coello
,
V. V.
Lozovoy
,
T. C.
Gunaratne
,
B.
Xu
,
I.
Borukhovich
,
C.-h.
Tseng
,
T.
Weinacht
, and
M.
Dantus
, “
Interference without an interferometer: A different approach to measuring, compressing, and shaping ultrashort laser pulses
,”
J. Opt. Soc. Am. B
25
(
6
),
A140
A150
(
2008
).
37.
J. K.
Ranka
,
A. L.
Gaeta
,
A.
Baltuska
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
, “
Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode
,”
Opt. Lett.
22
(
17
),
1344
1346
(
1997
).
38.
S.
Lochbrunner
,
P.
Huppmann
, and
E.
Riedle
, “
Crosscorrelation measurements of ultrashort visible pulses: Comparison between nonlinear crystals and SiC photodiodes
,”
Opt. Commun.
184
(
1
),
321
328
(
2000
).
39.
E. A.
Donley
,
T. P.
Heavner
,
F.
Levi
,
M. O.
Tataw
, and
S. R.
Jefferts
, “
Double-pass acousto-optic modulator system
,”
Rev. Sci. Instrum.
76
(
6
),
63112
(
2005
).
40.
D.
Brinks
,
R.
Hildner
,
F. D.
Stefani
, and
N. F.
van Hulst
, “
Beating spatio-temporal coupling: Implications for pulse shaping and coherent control experiments
,”
Opt. Express
19
(
27
),
26486
26499
(
2011
).
41.
S.
Pres
,
L.
Kontschak
,
M.
Hensen
, and
T.
Brixner
, “
Coherent 2D electronic spectroscopy with complete characterization of excitation pulses during all scanning steps
,”
Opt. Express
29
(
3
),
4191
4209
(
2021
).
42.
P. D.
Dahlberg
,
P.-C.
Ting
,
S. C.
Massey
,
M. A.
Allodi
,
E. C.
Martin
,
C. N.
Hunter
, and
G. S.
Engel
, “
Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells
,”
Nat. Commun.
8
,
988
994
(
2017
).
43.
S.
Irgen-Gioro
,
A. P.
Spencer
,
W. O.
Hutson
, and
E.
Harel
, “
Coherences of bacteriochlorophyll a uncovered using 3D-electronic spectroscopy
,”
J. Phys. Chem. Lett.
9
(
20
),
6077
6081
(
2018
).
44.
E.
Bartholdi
and
R. R.
Ernst
, “
Fourier spectroscopy and the causality principle
,”
J. Magn. Reson.
11
(
1
),
9
19
(
1973
).
45.
D. M.
Jonas
, “
Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn–Teller effect, and energy transfer
,”
Annu. Rev. Phys. Chem.
69
(
1
),
327
352
(
2018
).
46.
B.
Cho
,
V.
Tiwari
,
R. J.
Hill
,
W. K.
Peters
,
T. L.
Courtney
,
A. P.
Spencer
, and
D. M.
Jonas
, “
Absolute measurement of femtosecond pump–probe signal strength
,”
J. Phys. Chem. A
117
(
29
),
6332
6345
(
2013
).
47.
B.
Cho
,
V.
Tiwari
, and
D. M.
Jonas
, “
Simultaneous all-optical determination of molecular concentration and extinction coefficient
,”
Anal. Chem.
85
(
11
),
5514
5521
(
2013
).
48.
J. D.
Hybl
,
A.
Albrecht Ferro
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy
,”
J. Chem. Phys.
115
(
14
),
6606
6622
(
2001
).
49.
R. J.
McIntyre
, “
Multiplication noise in uniform avalanche diodes
,”
IEEE Trans. Electron Devices
ED-13
(
1
),
164
168
(
1966
).
50.
R.
Gvishi
and
R.
Reisfeld
, “
An investigation of the equilibrium between various forms of oxazine-170 by means of absorption and fluorescence spectroscopy
,”
Chem. Phys. Lett.
156
(
2
),
181
186
(
1989
).
51.
V. V.
Kostjukov
, “
Photoexcitation of oxazine 170 dye in aqueous solution: TD-DFT study
,”
J. Mol. Model.
27
(
11
),
311
(
2021
).
52.
M.
Vogel
,
W.
Rettig
,
U.
Fiedeldei
, and
H.
Baumgärtel
, “
Non-radiative deactivation via biradicaloid charge-transfer states in oxazine and thiazine dyes
,”
Chem. Phys. Lett.
148
(
4
),
347
352
(
1988
).
53.
M. S.
Zakerhamidi
and
S. G.
Sorkhabi
, “
Solvent effects on the molecular resonance structures and photo-physical properties of a group of oxazine dyes
,”
J. Lumin.
157
,
220
228
(
2015
).
54.
A. L.
Dobryakov
,
S. A.
Kovalenko
,
A.
Weigel
,
J. L.
Pérez-Lustres
,
J.
Lange
,
A.
Müller
, and
N. P.
Ernsting
, “
Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing
,”
Rev. Sci. Instrum.
81
(
11
),
113106
(
2010
).
55.
D. A.
Farrow
,
E. R.
Smith
,
W.
Qian
, and
D. M.
Jonas
, “
The polarization anisotropy of vibrational quantum beats in resonant pump-probe experiments: Diagrammatic calculations for square symmetric molecules
,”
J. Chem. Phys.
129
(
17
),
174509
(
2008
).
56.
V.
Butkus
,
J.
Alster
,
E.
Bašinskaitė
,
R.
Augulis
,
P.
Neuhaus
,
L.
Valkunas
,
H. L.
Anderson
,
D.
Abramavicius
, and
D.
Zigmantas
, “
Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring
,”
J. Phys. Chem. Lett.
8
(
10
),
2344
2349
(
2017
).
57.
M.
Bradler
,
P.
Baum
, and
E.
Riedle
, “
Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses
,”
Appl. Phys. B
97
(
3
),
561
(
2009
).
58.
J.
Moses
,
S.-W.
Huang
,
K.-H.
Hong
,
O. D.
Mücke
,
E. L.
Falcão-Filho
,
A.
Benedick
,
F. Ö.
Ilday
,
A.
Dergachev
,
J. A.
Bolger
,
B. J.
Eggleton
, and
F. X.
Kärtner
, “
Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression
,”
Opt. Lett.
34
(
11
),
1639
1641
(
2009
).
59.
W. P.
Carbery
,
B.
Pinto-Pacheco
,
D.
Buccella
, and
D. B.
Turner
, “
Resolving the fluorescence quenching mechanism of an oxazine dye using ultrabroadband two-dimensional electronic spectroscopy
,”
J. Phys. Chem. A
123
(
24
),
5072
5080
(
2019
).
60.
R.
Zhu
,
J.
Zou
,
Z.
Wang
,
H.
Chen
, and
Y.
Weng
, “
Electronic state-resolved multimode-coupled vibrational wavepackets in oxazine 720 by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. A
124
(
45
),
9333
9342
(
2020
).
61.
J.
Brazard
,
L. A.
Bizimana
,
T.
Gellen
,
W. P.
Carbery
, and
D. B.
Turner
, “
Experimental detection of branching at a conical intersection in a highly fluorescent molecule
,”
J. Phys. Chem. Lett.
7
(
1
),
14
19
(
2016
).
62.
M. S.
Barclay
,
J. S.
Huff
,
R. D.
Pensack
,
P. H.
Davis
,
W. B.
Knowlton
,
B.
Yurke
,
J. C.
Dean
,
P. C.
Arpin
, and
D. B.
Turner
, “
Characterizing mode anharmonicity and Huang–Rhys factors using models of femtosecond coherence spectra
,”
J. Phys. Chem. Lett.
13
(
24
),
5413
5423
(
2022
).
63.
D. V.
Le
,
J. M.
de la Perrelle
,
T. N.
Do
,
X.
Leng
,
P. C.
Tapping
,
G. D.
Scholes
,
T. W.
Kee
, and
H.-S.
Tan
, “
Characterization of the ultrafast spectral diffusion and vibronic coherence of TIPS-pentacene using 2D electronic spectroscopy
,”
J. Chem. Phys.
155
(
1
),
014302
(
2021
).
64.
V.
Tiwari
,
Y. A.
Matutes
,
A.
Konar
,
Z.
Yu
,
M.
Ptaszek
,
D. F.
Bocian
,
D.
Holten
,
C.
Kirmaier
, and
J. P.
Ogilvie
, “
Strongly coupled bacteriochlorin dyad studied using phase-modulated fluorescence-detected two-dimensional electronic spectroscopy
,”
Opt. Express
26
(
17
),
22327
22341
(
2018
).
65.
P.
Malý
and
T.
Brixner
, “
Fluorescence-detected pump–probe spectroscopy
,”
Angew. Chem., Int. Ed.
60
(
34
),
18867
18875
(
2021
).
66.
E.
van den Berg
and
M. P.
Friedlander
, “
Probing the Pareto Frontier for basis pursuit solutions
,”
SIAM J. Sci. Comput.
31
(
2
),
890
912
(
2009
).
67.
Z.
Wang
,
S.
Lei
,
K. J.
Karki
,
A.
Jakobsson
, and
T.
Pullerits
, “
Compressed sensing for reconstructing coherent multidimensional spectra
,”
J. Phys. Chem. A
124
(
9
),
1861
1866
(
2020
).
68.
S. S.
Senlik
,
V. R.
Policht
, and
J. P.
Ogilvie
, “
Two-color nonlinear spectroscopy for the rapid acquisition of coherent dynamics
,”
J. Phys. Chem. Lett.
6
(
13
),
2413
2420
(
2015
).
69.
D.
Li
,
C.
Trovatello
,
S.
Dal Conte
,
M.
Nuß
,
G.
Soavi
,
G.
Wang
,
A. C.
Ferrari
,
G.
Cerullo
, and
T.
Brixner
, “
Exciton-phonon coupling strength in single-layer MoSe2 at room temperature
,”
Nat. Commun.
12
(
1
),
954
(
2021
).

Supplementary Material

You do not currently have access to this content.