Path sampling allows the study of rare events, such as chemical reactions, nucleation, and protein folding, via a Monte Carlo (MC) exploration in path space. Instead of configuration points, this method samples short molecular dynamics (MD) trajectories with specific start- and end-conditions. As in configuration MC, its efficiency highly depends on the types of MC moves. Since the last two decades, the central MC move for path sampling has been the so-called shooting move in which a perturbed phase point of the old path is propagated backward and forward in time to generate a new path. Recently, we proposed the subtrajectory moves, stone-skipping (SS) and web-throwing, that are demonstrably more efficient. However, the one-step crossing requirement makes them somewhat more difficult to implement in combination with external MD programs or when the order parameter determination is expensive. In this article, we present strategies to address the issue. The most generic solution is a new member of subtrajectory moves, wire fencing (WF), that is less thrifty than the SS but more versatile. This makes it easier to link path sampling codes with external MD packages and provides a practical solution for cases where the calculation of the order parameter is expensive or not a simple function of geometry. We demonstrate the WF move in a double-well Langevin model, a thin film breaking transition based on classical force fields, and a smaller ruthenium redox reaction at the ab initio level in which the order parameter explicitly depends on the electron density.

1.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
,
Science
334
,
517
(
2011
).
2.
D. E.
Shaw
,
P. J.
Adams
,
A.
Azaria
,
J. A.
Bank
,
B.
Batson
,
A.
Bell
,
M.
Bergdorf
,
J.
Bhatt
,
J. A.
Butts
,
T.
Correia
,
R. M.
Dirks
,
R. O.
Dror
,
M. P.
Eastwood
,
B.
Edwards
,
A.
Even
,
P.
Feldmann
,
M.
Fenn
,
C. H.
Fenton
,
A.
Forte
,
J.
Gagliardo
,
G.
Gill
,
M.
Gorlatova
,
B.
Greskamp
,
J.
Grossman
,
J.
Gullingsrud
,
A.
Harper
,
W.
Hasenplaugh
,
M.
Heily
,
B. C.
Heshmat
,
J.
Hunt
,
D. J.
Ierardi
,
L.
Iserovich
,
B. L.
Jackson
,
N. P.
Johnson
,
M. M.
Kirk
,
J. L.
Klepeis
,
J. S.
Kuskin
,
K. M.
Mackenzie
,
R. J.
Mader
,
R.
McGowen
,
A.
McLaughlin
,
M. A.
Moraes
,
M. H.
Nasr
,
L. J.
Nociolo
,
L.
O’Donnell
,
A.
Parker
,
J. L.
Peticolas
,
G.
Pocina
,
C.
Predescu
,
T.
Quan
,
J. K.
Salmon
,
C.
Schwink
,
K. S.
Shim
,
N.
Siddique
,
J.
Spengler
,
T.
Szalay
,
R.
Tabladillo
,
R.
Tartler
,
A. G.
Taube
,
M.
Theobald
,
B.
Towles
,
W.
Vick
,
S. C.
Wang
,
M.
Wazlowski
,
M. J.
Weingarten
,
J. M.
Williams
, and
K. A.
Yuh
, in
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21
(
Association for Computing Machinery
,
New York, NY, USA
,
2021
).
3.
M. E.
Goldberg
,
G. V.
Semisotnov
,
B.
Friguet
,
K.
Kuwajima
,
O. B.
Ptitsyn
, and
S.
Sugai
,
FEBS Lett.
263
,
51
(
1990
).
4.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
Amsterdam, The Netherlands
,
2017
).
5.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
6.
T. S.
van Erp
,
Phys. Rev. Lett.
98
,
268301
(
2007
).
7.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
8.
R.
Cabriolu
,
K. M. S.
Refsnes
,
P. G.
Bolhuis
, and
T. S.
van Erp
,
J. Chem. Phys.
147
,
152722
(
2017
).
9.
A.
Arjun
and
P. G.
Bolhuis
,
J. Phys. Chem. B
124
,
8099
(
2020
).
10.
M.
Moqadam
,
A.
Lervik
,
E.
Riccardi
,
V.
Venkatraman
,
B. K.
Alsberg
, and
T. S.
van Erp
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
E4569
(
2018
).
11.
M.
Eigen
and
L.
de Maeyer
,
Proc. R. Soc. London, Ser. A
247
,
505
(
1958
).
12.
W. C.
Natzle
and
C. B.
Moore
,
J. Phys. Chem.
89
,
2605
(
1985
).
13.
D.
Moroni
,
P. G.
Bolhuis
, and
T. S.
van Erp
,
J. Chem. Phys.
120
,
4055
(
2004
).
14.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
(
2004
).
15.
S.
Roet
,
D. T.
Zhang
, and
T. S.
van Erp
,
J. Phys. Chem. A
126
,
8878
(
2022
).
16.
C.
Dellago
,
P. G.
Bolhuis
, and
D.
Chandler
,
J. Chem. Phys.
108
,
9236
(
1998
).
17.
E.
Riccardi
,
O.
Dahlen
, and
T. S.
van Erp
,
J. Phys. Chem. Lett.
8
,
4456
(
2017
).
18.
D. W. H.
Swenson
,
J.-H.
Prinz
,
F.
Noe
,
J. D.
Chodera
, and
P. G.
Bolhuis
,
J. Chem. Theory Comput.
15
,
813
(
2019
).
19.
D. W. H.
Swenson
,
J.-H.
Prinz
,
F.
Noe
,
J. D.
Chodera
, and
P. G.
Bolhuis
,
J. Chem. Theory Comput.
15
,
837
(
2019
).
20.
A.
Lervik
,
E.
Riccardi
, and
T. S.
van Erp
,
J. Comput. Chem.
38
,
2439
(
2017
).
21.
E.
Riccardi
,
A.
Lervik
,
S.
Roet
,
O.
Aarøen
, and
T. S.
van Erp
,
J. Comput. Chem.
41
,
370
(
2020
).
22.
E.
Lindahl
,
M. J.
Abraham
,
B.
Hess
, and
D.
van der Spoel
,
GROMACS 2020.1 Manual
. (
2020
).
23.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
24.
P.
Eastman
,
M. S.
Friedrichs
,
J. D.
Chodera
,
R. J.
Radmer
,
C. M.
Bruns
,
J. P.
Ku
,
K. A.
Beauchamp
,
T. J.
Lane
,
L.-P.
Wang
,
D.
Shukla
,
T.
Tye
,
M.
Houston
,
T.
Stich
,
C.
Klein
,
M. R.
Shirts
, and
V. S.
Pande
,
J. Chem. Theory Comput.
9
,
461
(
2013
).
25.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
26.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
20
,
045021
(
2012
).
27.
S.
Winczewski
,
J.
Dziedzic
, and
J.
Rybicki
,
Comput. Phys. Commun.
198
,
128
(
2016
).
28.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
29.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations from Algorithms to Applications
(
Academic Press
,
San Diego, CA
,
2002
).
30.
J. I.
Siepmann
and
D.
Frenkel
,
Mol. Phys.
75
,
59
(
1992
).
31.
T. J. H.
Vlugt
,
R.
Krishna
, and
B.
Smit
,
J. Phys. Chem. B
103
,
1102
(
1999
).
32.
W. K.
Hastings
,
Biometrika
57
,
97
(
1970
).
33.
T. S.
van Erp
,
Adv. Chem. Phys.
151
,
27
(
2012
).
34.
A.
Ghysels
,
S.
Roet
,
S.
Davoudi
, and
T. S.
van Erp
,
Phys. Rev. Res.
3
,
033068
(
2021
).
35.
C.
Dellago
and
P. G.
Bolhuis
,
Mol. Simul.
30
,
795
(
2004
).
36.
T. S.
van Erp
and
P. G.
Bolhuis
,
J. Comput. Phys.
205
,
157
(
2005
).
37.
T. S.
van Erp
,
J. Chem. Phys.
125
,
174106
(
2006
).
38.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
39.
T. S.
van Erp
,
M.
Moqadam
,
E.
Riccardi
, and
A.
Lervik
,
J. Chem. Theory Comput.
12
,
5398
(
2016
).
40.
J.
Rogal
,
W.
Lechner
,
J.
Juraszek
,
B.
Ensing
, and
P. G.
Bolhuis
,
J. Comput. Phys.
133
,
174109
(
2010
).
41.
E.
Vanden-Eijnden
,
M.
Venturoli
,
G.
Ciccotti
, and
R.
Elber
,
J. Comput. Phys.
129
,
174102
(
2008
).
42.
A.
Haji-Akbari
,
J. Chem. Phys.
149
,
072303
(
2018
).
43.
Z. F.
Brotzakis
and
P. G.
Bolhuis
,
J. Chem. Phys.
145
,
164112
(
2016
).
44.
M.
Moqadam
,
E.
Riccardi
,
T. T.
Trinh
,
A.
Lervik
, and
T. S.
van Erp
,
Phys. Chem. Chem. Phys.
19
,
13361
(
2017
).
45.
D.
Moroni
,
P. R.
ten Wolde
, and
P. G.
Bolhuis
,
Phys. Rev. Lett.
94
,
235703
(
2005
).
46.
O.
Aarøen
,
E.
Riccardi
,
T. S. v.
Erp
, and
M.
Sletmoen
,
Colloids Surf., A
632
,
127808
(
2022
).
47.
O.
Aarøen
,
E.
Riccardi
, and
M.
Sletmoen
,
RSC Adv.
11
,
8730
(
2021
).
48.
E.
Riccardi
and
T.
Tichelkamp
,
Colloids Surf., A
573
,
246
(
2019
).
49.
E.
Riccardi
,
K.
Kovalchuk
,
A. Y.
Mehandzhiyski
, and
B. A.
Grimes
,
J. Dispersion Sci. Technol.
35
,
1018
(
2014
).
50.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
,
Rev. Mod. Phys.
84
,
1419
(
2012
).
51.
R. J.
Allen
,
C.
Valeriani
, and
P. R.
ten Wolde
,
J. Phys.: Condes. Matter
21
,
463102
(
2009
).
52.
F. A.
Escobedo
,
E. E.
Borrero
, and
J. C.
Araque
,
J. Phys.: Condes. Matter
21
,
333101
(
2009
).
53.
T. E.
Booth
and
J. S.
Hendricks
,
Nucl. Technol./Fusion
5
,
90
(
1984
).
54.
P. G.
Melnik-Melnikov
and
E. S.
Dekhtyaruk
,
Probab. Eng. Mech.
15
,
125
(
2000
).
55.
M.
Villenaltamirano
and
J.
Villenaltamirano
, in
Queueing, Performance and Control in ATM
, North-Holland Studies in Telecommunication, edited by
J. W.
Cohen
and
C. D.
Pack
(
Elsevier Science Publisher B. V.
,
Amsterdam
,
1991
), Vol. 15, pp.
71
76
, 13th International Teletraffic Congress ( ITC-13 ), Copenhagen, Denmark, Jun 19-26, 1991.
56.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
57.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
58.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
59.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
60.
A.
Tiwari
and
B.
Ensing
,
Faraday Discuss.
195
,
291
(
2016
).
61.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
62.
E.
Riccardi
,
S.
Pantano
, and
R.
Potestio
,
Interfaces: Focus
9
,
20190005
(
2019
).
63.
A.-L.
Lamprecht
,
L.
Garcia
,
M.
Kuzak
,
C.
Martinez
,
R.
Arcila
,
E.
Martin Del Pico
,
V.
Dominguez Del Angel
,
S.
Van De Sandt
,
J.
Ison
,
P. A.
Martinez
 et al.,
Data Sci.
3
,
37
(
2020
).
You do not currently have access to this content.