Linear-scaling techniques for Kohn–Sham density functional theory are essential to describe the ground state properties of extended systems. Still, these techniques often rely on the localization of the density matrix or accurate embedding approaches, limiting their applicability. In contrast, stochastic density functional theory (sDFT) achieves linear- and sub-linear scaling by statistically sampling the ground state density without relying on embedding or imposing localization. In return, ground state observables, such as the forces on the nuclei, fluctuate in sDFT, making optimizing the nuclear structure a highly non-trivial problem. In this work, we combine the most recent noise-reduction schemes for sDFT with stochastic optimization algorithms to perform structure optimization within sDFT. We compare the performance of the stochastic gradient descent approach and its variations (stochastic gradient descent with momentum) with stochastic optimization techniques that rely on the Hessian, such as the stochastic Broyden–Fletcher–Goldfarb–Shanno algorithm. We further provide a detailed assessment of the computational efficiency and its dependence on the optimization parameters of each method for determining the ground state structure of bulk silicon with varying supercell dimensions.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
R. G.
Parr
and
W.
Yang
,
Annu. Rev. Phys. Chem.
46
,
701
(
1995
).
4.
J.
Neugebauer
and
T.
Hickel
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
438
(
2013
).
5.
Z. L.
Seeger
and
E. I.
Izgorodina
,
J. Chem. Theory Comput.
16
,
6735
(
2020
).
6.
D.
Bálint
and
L.
Jäntschi
,
Mathematics
9
,
2855
(
2021
).
7.
K.-H.
Liou
,
A.
Biller
,
L.
Kronik
, and
J. R.
Chelikowsky
,
J. Chem. Theory Comput.
17
,
4039
(
2021
).
8.
D.
Packwood
,
J.
Kermode
,
L.
Mones
,
N.
Bernstein
,
J.
Woolley
,
N.
Gould
,
C.
Ortner
, and
G.
Csányi
,
J. Chem. Phys.
144
,
164109
(
2016
).
9.
F.
Mauri
,
G.
Galli
, and
R.
Car
,
Phys. Rev. B
47
,
9973
(
1993
).
10.
P.
Ordejón
,
D. A.
Drabold
,
M. P.
Grumbach
, and
R. M.
Martin
,
Phys. Rev. B
48
,
14646
(
1993
).
11.
S.
Goedecker
,
J. Comput. Phys.
118
,
261
(
1995
).
12.
E.
Hernández
and
M. J.
Gillan
,
Phys. Rev. B
51
,
10157
(
1995
).
14.
A. H. R.
Palser
and
D. E.
Manolopoulos
,
Phys. Rev. B
58
,
12704
(
1998
).
16.
17.
T.
Zhu
,
W.
Pan
, and
W.
Yang
,
Phys. Rev. B
53
,
12713
(
1996
).
18.
R.
Baer
and
M.
Head-Gordon
,
Phys. Rev. Lett.
79
,
3962
(
1997
).
19.
Z.
Luo
,
X.
Qin
,
L.
Wan
,
W.
Hu
, and
J.
Yang
,
Front. Chem.
8
,
589910
(
2020
).
20.
C.-K.
Skylaris
,
P. D.
Haynes
,
A. A.
Mostofi
, and
M. C.
Payne
,
J. Chem. Phys.
122
,
084119
(
2005
).
21.
M.
Todorović
,
D. R.
Bowler
,
M. J.
Gillan
, and
T.
Miyazaki
,
J. R. Soc., Interface
10
,
20130547
(
2013
).
22.
A.
Nakata
,
J. S.
Baker
,
S. Y.
Mujahed
,
J. T. L.
Poulton
,
S.
Arapan
,
J.
Lin
,
Z.
Raza
,
S.
Yadav
,
L.
Truflandier
,
T.
Miyazaki
, and
D. R.
Bowler
,
J. Chem. Phys.
152
,
164112
(
2020
).
23.
J.
Aarons
,
M.
Sarwar
,
D.
Thompsett
, and
C.-K.
Skylaris
,
J. Chem. Phys.
145
,
220901
(
2016
).
24.
Á.
Ruiz-Serrano
and
C.-K.
Skylaris
,
J. Chem. Phys.
139
,
054107
(
2013
).
25.
S.
Mohr
,
M.
Eixarch
,
M.
Amsler
,
M. J.
Mantsinen
, and
L.
Genovese
,
Nucl. Mater. Energy
15
,
64
(
2018
).
26.
W.
Yang
and
T. S.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
27.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
28.
T. A.
Wesolowski
,
S.
Shedge
, and
X.
Zhou
,
Chem. Rev.
115
,
5891
(
2015
).
29.
J. D.
Goodpaster
,
T. A.
Barnes
, and
T. F.
Miller
,
J. Chem. Phys.
134
,
164108
(
2011
).
30.
C.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
135
,
194104
(
2011
).
31.
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
,
Phys. Rev. Lett.
111
,
106402
(
2013
).
32.
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
,
J. Chem. Phys.
141
,
041102
(
2014
).
33.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
,
J. Chem. Phys.
150
,
034106
(
2019
).
34.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
,
J. Chem. Phys.
151
,
114116
(
2019
).
35.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
,
J. Chem. Phys.
154
,
204108
(
2021
).
36.
E.
Arnon
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
,
J. Chem. Phys.
146
,
224111
(
2017
).
37.
E.
Arnon
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
,
J. Chem. Phys.
152
,
161103
(
2020
).
38.
H.
Robbins
and
S.
Monro
,
Ann. Math. Stat.
22
,
400
(
1951
).
39.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
,
Nature
323
,
533
(
1986
).
40.
B. T.
Polyak
and
A. B.
Juditsky
,
SIAM J. Control Optim.
30
,
838
(
1992
).
41.
J.
Duchi
,
E.
Hazan
, and
Y.
Singer
,
J. Mach. Learn. Res.
12
,
2121
(
2011
).
42.
T.
Tieleman
and
G.
Hinton
,
COURSERA: Neural Networks Mach. Learn.
4
,
26
(
2012
).
43.
D. P.
Kingma
and
J.
Ba
, arXiv:1412.6980 (
2014
).
44.
N. N.
Schraudolph
,
J.
Yu
, and
S.
Günter
, in
Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
[
Proceedings of Machine Learning Research (PMLR)
,
San Juan, Puerto Rico
,
2007
], Vol. 2, pp.
436
443
.
45.
R.
Johnson
and
T.
Zhang
,
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2013
), Vol. 26.
46.
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
,
Annu. Rev. Phys. Chem.
73
,
255
(
2022
).
47.
R.
Kosloff
,
J. Phys. Chem.
92
,
2087
(
1988
).
48.
R.
Kosloff
,
Annu. Rev. Phys. Chem.
45
,
145
(
1994
).
49.
G.
Lan
,
First-Order and Stochastic Optimization Methods for Machine Learning
, Springer Series in the Data Sciences (
Springer International Publishing
,
2020
).
50.
R.
Jin
and
X.
He
, in
IEEE 16th International Conference on Control and Automation (ICCA)
(
IEEE
,
2020
), pp.
779
784
.
51.
A.
Nemirovski
,
A.
Juditsky
,
G.
Lan
, and
A.
Shapiro
,
SIAM J. Optim.
19
,
1574
(
2009
).
52.
C.-K.
Skylaris
and
P. D.
Haynes
,
J. Chem. Phys.
127
,
164712
(
2007
).
53.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
54.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
55.
R. D.
King-Smith
,
M. C.
Payne
, and
J. S.
Lin
,
Phys. Rev. B
44
,
13063
(
1991
).
56.
S.
De
,
A.
Yadav
,
D.
Jacobs
, and
T.
Goldstein
, in
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics
[
Proceedings of Machine Learning Research (PMLR)
,
2017
], Vol. 54, pp.
1504
1513
.
57.
S. R. S.
Varadhan
,
Stochastic Processes
, Courant Lecture Notes in Mathematics (
Courant Institute of Mathematical Sciences
,
2007
).
58.
M. D.
Fabian
,
B.
Shpiro
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1412
(
2019
).

Supplementary Material

You do not currently have access to this content.