Simulating the unitary dynamics of a quantum system is a fundamental problem of quantum mechanics, in which quantum computers are believed to have significant advantage over their classical counterparts. One prominent such instance is the simulation of electronic dynamics, which plays an essential role in chemical reactions, non-equilibrium dynamics, and material design. These systems are time-dependent, which requires that the corresponding simulation algorithm can be successfully concatenated with itself over different time intervals to reproduce the overall coherent quantum dynamics of the system. In this paper, we quantify such simulation algorithms by the property of being fully-coherent: the algorithm succeeds with arbitrarily high success probability 1 − δ while only requiring a single copy of the initial state. We subsequently develop fully-coherent simulation algorithms based on quantum signal processing (QSP), including a novel algorithm that circumvents the use of amplitude amplification while also achieving a query complexity additive in time t, ln(1/δ), and ln(1/ϵ) for error tolerance ϵ: ΘH|t|+ln(1/ϵ)+ln(1/δ). Furthermore, we numerically analyze these algorithms by applying them to the simulation of the spin dynamics of the Heisenberg model and the correlated electronic dynamics of an H2 molecule. Since any electronic Hamiltonian can be mapped to a spin Hamiltonian, our algorithm can efficiently simulate time-dependent ab initio electronic dynamics in the circuit model of quantum computation. Accordingly, it is also our hope that the present work serves as a bridge between QSP-based quantum algorithms and chemical dynamics, stimulating a cross-fertilization between these exciting fields.

1.
R. P.
Feynman
,
Int. J. Theor. Phys.
21
,
467
(
1982
).
2.
M.
Reiher
,
N.
Wiebe
,
K. M.
Svore
,
D.
Wecker
, and
M.
Troyer
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
7555
(
2017
).
3.
S.
McArdle
,
S.
Endo
,
A.
Aspuru-Guzik
,
S. C.
Benjamin
, and
X.
Yuan
,
Rev. Mod. Phys.
92
,
015003
(
2020
).
4.
N.
Lambert
,
Y.-N.
Chen
,
Y.-C.
Cheng
,
C.-M.
Li
,
G.-Y.
Chen
, and
F.
Nori
,
Nat. Phys.
9
,
10
(
2013
).
5.
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H.-G.
Duan
,
J.
Hauer
,
U.
Kleinekathöfer
,
T. L.
Jansen
,
T.
Mančal
,
R. D.
Miller
,
J. P.
Ogilvie
 et al.,
Sci. Adv.
6
,
eaaz4888
(
2020
).
6.
F.
Krausz
and
M.
Ivanov
,
Rev. Mod. Phys.
81
,
163
(
2009
).
7.
M.
Maiuri
,
M.
Garavelli
, and
G.
Cerullo
,
J. Am. Chem. Soc.
142
,
3
(
2020
).
8.
L.
Young
,
K.
Ueda
,
M.
Gühr
,
P. H.
Bucksbaum
,
M.
Simon
,
S.
Mukamel
,
N.
Rohringer
,
K. C.
Prince
,
C.
Masciovecchio
,
M.
Meyer
 et al.,
J. Phys. B: At., Mol. Opt. Phys.
51
,
032003
(
2018
).
9.
A.
Klein
and
D.
Jaksch
,
Phys. Rev. A
73
,
053613
(
2006
).
10.
W.
Hofstetter
and
T.
Qin
,
J. Phys. B: At., Mol. Opt. Phys.
51
,
082001
(
2018
).
11.
J.
Preskill
, in
The 36th Annual International Symposium on Lattice Field Theory. 22–28 July
(
2018
), p.
24
; arXiv:1811.10085 [hep-lat].
12.
W. A.
de Jong
,
K.
Lee
,
J.
Mulligan
,
M.
Płoskoń
,
F.
Ringer
, and
X.
Yao
,
Phys. Rev. D
106
,
054508
(
2021
); arXiv:2106.08394 [quant-ph].
13.
X.
Li
,
N.
Govind
,
C.
Isborn
,
A. E.
DePrince
 III
, and
K.
Lopata
,
Chem. Rev.
120
,
9951
(
2020
).
14.
A. D.
McLachlan
and
M. A.
Ball
,
Rev. Mod. Phys.
36
,
844
(
1964
).
15.
P.
Jorgensen
,
Annu. Rev. Phys. Chem.
26
,
359
(
1975
).
16.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
17.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
18.
J.
Zanghellini
,
M.
Kitzler
,
T.
Brabec
, and
A.
Scrinzi
,
J. Phys. B: At., Mol. Opt. Phys.
37
,
763
(
2004
).
19.
E.
Fromager
,
S.
Knecht
, and
H. J. A.
Jensen
,
J. Chem. Phys.
138
,
084101
(
2013
).
20.
L.
Greenman
,
P. J.
Ho
,
S.
Pabst
,
E.
Kamarchik
,
D. A.
Mazziotti
, and
R.
Santra
,
Phys. Rev. A
82
,
023406
(
2010
).
21.
N.
Rohringer
,
A.
Gordon
, and
R.
Santra
,
Phys. Rev. A
74
,
043420
(
2006
).
22.
J. B.
Schriber
and
F. A.
Evangelista
,
J. Chem. Phys.
151
,
171102
(
2019
).
23.
C.
Huber
and
T.
Klamroth
,
J. Chem. Phys.
134
,
054113
(
2011
).
24.
A. F.
White
and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
14
,
5690
(
2018
).
25.
A. F.
White
and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
15
,
6137
(
2019
).
26.
P.
Shushkov
and
T. F.
Miller
 III
,
J. Chem. Phys.
151
,
134107
(
2019
).
27.
M. A.
Cazalilla
and
J. B.
Marston
,
Phys. Rev. Lett.
88
,
256403
(
2002
).
28.
S. R.
White
and
A. E.
Feiguin
,
Phys. Rev. Lett.
93
,
076401
(
2004
).
29.
A. J.
Daley
,
C.
Kollath
,
U.
Schollwöck
, and
G.
Vidal
,
J. Stat. Mech.: Theory Exp.
2004
,
P04005
.
30.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
31.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
139
,
10
(
1987
).
32.
J. D.
Doll
,
R. D.
Coalson
, and
D. L.
Freeman
,
J. Chem. Phys.
87
,
1641
(
1987
).
33.
M.
Schiró
,
Phys. Rev. B
81
,
085126
(
2010
).
34.
G.
Cohen
,
E.
Gull
,
D. R.
Reichman
, and
A. J.
Millis
,
Phys. Rev. Lett.
115
,
266802
(
2015
).
35.
M.
Motta
and
S.
Zhang
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1364
(
2018
).
36.
M. S.
Church
and
B. M.
Rubenstein
,
J. Chem. Phys.
154
,
184103
(
2021
).
37.
J. K.
Freericks
,
V. M.
Turkowski
, and
V.
Zlatić
,
Phys. Rev. Lett.
97
,
266408
(
2006
).
38.
J. S.
Kretchmer
and
G. K.-L.
Chan
,
J. Chem. Phys.
148
,
054108
(
2018
).
39.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferová
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
,
N. P. D.
Sawaya
 et al.,
Chem. Rev.
119
,
10856
(
2019
).
40.
I. D.
Kivlichan
,
N.
Wiebe
,
R.
Babbush
, and
A.
Aspuru-Guzik
,
J. Phys. A: Math. Theor.
50
,
305301
(
2017
).
41.
I.
Kassal
,
S. P.
Jordan
,
P. J.
Love
,
M.
Mohseni
, and
A.
Aspuru-Guzik
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
18681
(
2008
).
42.
S.
Lee
,
J.
Lee
,
H.
Zhai
,
Y.
Tong
,
A. M.
Dalzell
,
A.
Kumar
,
P.
Helms
,
J.
Gray
,
Z.-H.
Cui
,
W.
Liu
 et al., arXiv:2208.02199 (
2022
).
44.
M.
Suzuki
,
J. Math. Phys.
32
,
400
(
1991
).
45.
D. W.
Berry
,
G.
Ahokas
,
R.
Cleve
, and
B. C.
Sanders
,
Commun. Math. Phys.
270
,
359
371
(
2006
).
46.
A. M.
Childs
,
Y.
Su
,
M. C.
Tran
,
N.
Wiebe
, and
S.
Zhu
,
Phys. Rev. X
11
,
011020
(
2021
).
47.
Y.
Su
,
H.-Y.
Huang
, and
E. T.
Campbell
,
Quantum
5
,
495
(
2021
).
48.
M. C.
Tran
,
Y.
Su
,
D.
Carney
, and
J. M.
Taylor
,
PRX Quantum
2
,
010323
(
2021
).
49.
D. W.
Berry
,
A. M.
Childs
,
R.
Cleve
,
R.
Kothari
, and
R. D.
Somma
,
Phys. Rev. Lett.
114
,
090502
(
2015
).
50.
L.
Novo
and
D.
Berry
,
Quantum Inf. Comput.
17
,
623
(
2017
).
51.
Q.
Zhao
and
X.
Yuan
,
Quantum
5
,
534
(
2021
); arXiv:2103.07988 [quant-ph].
52.
A. M.
Childs
,
Phys. Rev. Lett.
102
,
180501
(
2009
).
53.
D. W.
Berry
,
A. M.
Childs
, and
R.
Kothari
, in
2015 IEEE 56th Annual Symposium on Foundations of Computer Science
(
IEEE
,
2015
).
54.
D. W.
Berry
and
A. M.
Childs
,
Quantum Inf. Comput.
12
,
29
(
2012
).
55.
Z.
Zhang
,
Q.
Wang
, and
M.
Ying
, arXiv:2105.11889 [quant-ph] (
2021
).
56.
G. H.
Low
,
T. J.
Yoder
, and
I. L.
Chuang
,
Phys. Rev. X
6
,
041067
(
2016
).
57.
G. H.
Low
and
I. L.
Chuang
,
Quantum
3
,
163
(
2019
).
58.
D. R.
Weinberg
,
C. J.
Gagliardi
,
J. F.
Hull
,
C. F.
Murphy
,
C. A.
Kent
,
B. C.
Westlake
,
A.
Paul
,
D. H.
Ess
,
D. G.
McCafferty
, and
T. J.
Meyer
,
Chem. Rev.
112
,
4016
(
2012
).
59.
K.
Ramasesha
,
S. R.
Leone
, and
D. M.
Neumark
,
Annu. Rev. Phys. Chem.
67
,
41
(
2016
).
60.
F.
Calegari
,
D.
Ayuso
,
A.
Trabattoni
,
L.
Belshaw
,
S.
De Camillis
,
S.
Anumula
,
F.
Frassetto
,
L.
Poletto
,
A.
Palacios
,
P.
Decleva
 et al.,
Science
346
,
336
(
2014
).
61.
I.
Rotter
and
J. P.
Bird
,
Rep. Prog. Phys.
78
,
114001
(
2015
).
62.
Y.-H.
Chen
,
A.
Kalev
, and
I.
Hen
,
PRX Quantum
2
,
030342
(
2021
).
63.
G. H.
Low
and
N.
Wiebe
, arXiv:1805.00675 [quant-ph] (
2018
).
64.
A.
Gilyén
,
Y.
Su
,
G. H.
Low
, and
N.
Wiebe
, in
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
,
2019
.
65.
J. M.
Martyn
,
Z. M.
Rossi
,
A. K.
Tan
, and
I. L.
Chuang
,
PRX Quantum
2
,
040203
(
2021
); arXiv:2105.02859 [quant-ph].
66.
G. H.
Low
and
I. L.
Chuang
, arXiv:1707.05391 [quant-ph] (
2017
).
67.
G.
Brassard
,
P.
Høyer
,
M.
Mosca
, and
A.
Tapp
,
Quantum Comput. Inf.
305
,
53
74
(
2002
).
68.
I.
Chuang
,
A.
Tan
, and
J. M.
Martyn
, “
PyQSP: Python quantum signal processing
,” https://github.com/ichuang/pyqsp,
2020
.
69.
Y.
Dong
,
K. B.
Whaley
, and
L.
Lin
, arXiv:2108.03747 [quant-ph] (
2021
).
70.
A. M.
Childs
,
D.
Maslov
,
Y.
Nam
,
N. J.
Ross
, and
Y.
Su
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
9456
(
2018
).
71.
J. M.
Martyn
,
Z. E.
Chin
, and
Y.
Liu
, “
Coherent Hamiltonian simulation
,” https://github.com/jmmartyn/Coherent_One_Shot,
2021
.
72.
S.
Anis
 et al., “
Qiskit: An open-source framework for quantum computing
,”
2021
.
73.
M.
Nisoli
,
P.
Decleva
,
F.
Calegari
,
A.
Palacios
, and
F.
Martín
,
Chem. Rev.
117
,
10760
(
2017
).
74.
P. O.
Löwdin
,
J. Chem. Phys.
18
,
365
(
1950
).
75.
P.
Jordan
and
E. P.
Wigner
,
The Collected Works of Eugene Paul Wigner
(
Springer
,
1993
), pp.
109
129
.
76.
J.
Haah
,
M. B.
Hastings
,
R.
Kothari
, and
G. H.
Low
,
SIAM J. Comput.
0
,
FOCS18
(
2021
).
77.
A. M.
Childs
,
R.
Kothari
, and
R. D.
Somma
,
SIAM J. Comput.
46
,
1920
1950
(
2017
).
78.
L.-C.
Wan
,
C.-H.
Yu
,
S.-J.
Pan
,
S.-J.
Qin
,
F.
Gao
, and
Q.-Y.
Wen
,
Phys. Rev. A
104
,
062414
(
2021
).
79.
J.
Lee
,
D. W.
Berry
,
C.
Gidney
,
W. J.
Huggins
,
J. R.
McClean
,
N.
Wiebe
, and
R.
Babbush
,
PRX Quantum
2
,
030305
(
2021
).
80.
G. H.
Low
and
I. L.
Chuang
,
Phys. Rev. Lett.
118
,
010501
(
2017
).
81.
G. H.
Low
, “
Quantum signal processing by single-qubit dynamics
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
2017
.
82.
S.
Sachdeva
and
N. K.
Vishnoi
,
Found. Trends Theor. Comput. Sci.
9
,
125
(
2014
).
83.
R.
Iten
,
O.
Reardon-Smith
,
E.
Malvetti
,
L.
Mondada
,
G.
Pauvert
,
E.
Redmond
,
R. S.
Kohli
, and
R.
Colbeck
, arXiv:1904.01072 [quant-ph] (
2021
).
You do not currently have access to this content.