We used Langevin dynamics simulations without hydrodynamic interactions to probe knot diffusion mechanisms and the time scales governing the evolution and the spontaneous untying of trefoil knots in nanochannel-confined DNA molecules in the extended de Gennes regime. The knot untying follows an “opening up process,” wherein the initially tight knot continues growing and fluctuating in size as it moves toward the end of the DNA molecule before its annihilation at the chain end. The mean knot size increases significantly and sub-linearly with increasing chain contour length. The knot diffusion in nanochannel-confined DNA molecules is subdiffusive, with the unknotting time scaling with chain contour length with an exponent of 2.64 ± 0.23 to within a 95% confidence interval. The scaling exponent for the mean unknotting time vs chain contour length, along with visual inspection of the knot conformations, suggests that the knot diffusion mechanism is a combination of self-reptation and knot region breathing for the simulated parameters.

1.
D.
Meluzzi
,
D. E.
Smith
, and
G.
Arya
,
Annu. Rev. Biophys.
39
,
349
(
2010
).
2.
L. F.
Liu
,
L.
Perkocha
,
R.
Calendar
, and
J. C.
Wang
,
Proc. Natl. Acad. Sci. U. S. A.
78
,
5498
(
1981
).
3.
W. R.
Taylor
and
K.
Lin
,
Nature
421
,
25
(
2003
).
4.
E.
Orlandini
,
J. Phys. A: Math. Theor.
51
,
053001
(
2017
).
5.
D.
O’Donnol
,
A.
Stasiak
, and
D.
Buck
,
Nucleic Acids Res.
46
,
9181
(
2018
).
6.
L.
Olavarrieta
,
M. L.
Martínez-Robles
,
P.
Hernández
,
D. B.
Krimer
, and
J. B.
Schvartzman
,
Mol. Microbiol.
46
,
699
(
2002
).
7.
S. H.
Chen
,
N.-L.
Chan
, and
T.
Hsieh
,
Annu. Rev. Biochem.
82
,
139
(
2013
).
8.
K.
Hevener
,
T. A.
Verstak
,
K. E.
Lutat
,
D. L.
Riggsbee
, and
J. W.
Mooney
,
Acta Pharm. Sin. B
8
,
844
(
2018
).
9.
E. T.
Lam
,
A.
Hastie
,
C.
Lin
,
D.
Ehrlich
,
S. K.
Das
,
M. D.
Austin
,
P.
Deshpande
,
H.
Cao
,
N.
Nagarajan
,
M.
Xiao
et al,
Nat. Biotechnol.
30
,
771
(
2012
).
10.
M.
Jain
,
H. E.
Olsen
,
B.
Paten
, and
M.
Akeson
,
Genome Biol.
17
,
239
(
2016
).
11.
X. R.
Bao
,
H. J.
Lee
, and
S. R.
Quake
,
Phys. Rev. Lett.
91
,
265506
(
2003
).
12.
B. W.
Soh
,
A. R.
Klotz
, and
P. S.
Doyle
,
Macromolecules
51
,
9562
(
2018
).
13.
B. W.
Soh
,
V.
Narsimhan
,
A. R.
Klotz
, and
P. S.
Doyle
,
Soft Matter
14
,
1689
(
2018
).
14.
V.
Narsimhan
,
A. R.
Klotz
, and
P. S.
Doyle
,
ACS Macro Lett.
6
,
1285
(
2017
).
15.
A. R.
Klotz
,
B. W.
Soh
, and
P. S.
Doyle
,
Phys. Rev. Lett.
120
,
188003
(
2018
).
16.
A. R.
Klotz
,
V.
Narsimhan
,
B. W.
Soh
, and
P. S.
Doyle
,
Macromolecules
50
,
4074
(
2017
).
17.
Z.
Ma
and
K. D.
Dorfman
,
Macromolecules
53
,
6461
(
2020
).
18.
S.
Amin
,
A.
Khorshid
,
L.
Zeng
,
P.
Zimny
, and
W.
Reisner
,
Nat. Commun.
9
,
1506
(
2018
).
19.
Z.
Ma
and
K. D.
Dorfman
,
J. Chem. Phys.
155
,
154901
(
2021
).
20.
Z.
Ma
and
K. D.
Dorfman
,
Macromolecules
54
,
4211
(
2021
).
21.
P. G.
Dommersnes
,
Y.
Kantor
, and
M.
Kardar
,
Phys. Rev. E
66
,
31802
(
2002
).
22.
A. Y.
Grosberg
and
Y.
Rabin
,
Phys. Rev. Lett.
99
,
217801
(
2007
).
23.
R.
Metzler
,
W.
Reisner
,
R.
Riehn
,
R.
Austin
,
J. O.
Tegenfeldt
, and
I. M.
Sokolov
,
Europhys. Lett.
76
,
696
(
2006
).
24.
L.
Dai
and
P. S.
Doyle
,
Macromolecules
51
,
6327
(
2018
).
25.
L.
Dai
,
J. R. C.
van der Maarel
, and
P. S.
Doyle
,
ACS Macro Lett.
1
,
732
(
2012
).
26.
C.
Micheletti
and
E.
Orlandini
,
Macromolecules
45
,
2113
(
2012
).
27.
A.
Jain
and
K. D.
Dorfman
,
Biomicrofluidics
11
,
024117
(
2017
).
28.
C.
Micheletti
and
E.
Orlandini
,
Soft Matter
8
,
10959
(
2012
).
29.
E.
Orlandini
and
C.
Micheletti
,
J. Biol. Phys.
39
,
267
(
2013
).
30.
C.
Plesa
,
D.
Verschueren
,
S.
Pud
,
J.
Van Der Torre
,
J. W.
Ruitenberg
,
M. J.
Witteveen
,
M. P.
Jonsson
,
A. Y.
Grosberg
,
Y.
Rabin
, and
C.
Dekker
,
Nat. Nanotechnol.
11
,
1093
(
2016
).
31.
A.
Suma
,
E.
Orlandini
, and
C.
Micheletti
,
APS March Meet
(
Abstr.
,
2017
), pp.
M1
M262
.
32.
A.
Suma
,
E.
Orlandini
, and
C.
Micheletti
,
J. Phys.: Condens. Matter
27
,
354102
(
2015
).
33.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
34.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
35.
R.
Scharein
, Progr. Draw. Vis. Manip. Energy Minimizing Knots, see http://www.knotplot.com (
1998
).
36.
J. W.
Alexander
,
Trans. Am. Math. Soc.
30
,
275
(
1928
).
37.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
,
Comput. Phys. Commun.
271
,
108171
(
2022
).
38.
L.
Tubiana
,
G.
Polles
,
E.
Orlandini
, and
C.
Micheletti
,
Eur. Phys. J. E
41
,
72
(
2018
).
39.
L.
Tubiana
,
E.
Orlandini
, and
C.
Micheletti
,
Prog. Theor. Phys. Suppl.
191
,
192
(
2011
).
40.
L.
Tubiana
,
E.
Orlandini
, and
C.
Micheletti
,
Phys. Rev. Lett.
107
,
188302
(
2011
).
41.
L.
Tubiana
,
A.
Rosa
,
F.
Fragiacomo
, and
C.
Micheletti
,
Macromolecules
46
,
3669
(
2013
).
42.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
43.
M.
Caraglio
,
F.
Baldovin
,
B.
Marcone
,
E.
Orlandini
, and
A. L.
Stella
,
ACS Macro Lett.
8
,
576
(
2019
).
44.
C.
Micheletti
and
E.
Orlandini
,
ACS Macro Lett.
3
,
876
(
2014
).
45.
R.
Matthews
,
A. A.
Louis
, and
J. M.
Yeomans
,
Europhys. Lett.
89
,
20001
(
2010
).
46.
L.
Huang
and
D. E.
Makarov
,
J. Phys. Chem. A
111
,
10338
(
2007
).
47.
V.
Narsimhan
,
C. B.
Renner
, and
P. S.
Doyle
,
ACS Macro Lett.
5
,
123
(
2016
).

Supplementary Material

You do not currently have access to this content.