A new version of the highly parallelized general-purpose molecular dynamics (MD) simulation program MODYLAS with high performance on the Fugaku computer was developed. A benchmark test using Fugaku indicated highly efficient communication, single instruction, multiple data (SIMD) processing, and on-cache arithmetic operations. The system’s performance deteriorated only slightly, even under high parallelization. In particular, a newly developed minimum transferred data method, requiring a significantly lower amount of data transfer compared to conventional communications, showed significantly high performance. The coordinates and forces of 101 810 176 atoms and the multipole coefficients of the subcells could be distributed to the 32 768 nodes (1 572 864 cores) in 2.3 ms during one MD step calculation. The SIMD effective instruction rates for floating-point arithmetic operations in direct force and fast multipole method (FMM) calculations measured on Fugaku were 78.7% and 31.5%, respectively. The development of a data reuse algorithm enhanced the on-cache processing; the cache miss rate for direct force and FMM calculations was only 2.74% and 1.43%, respectively, on the L1 cache and 0.08% and 0.60%, respectively, on the L2 cache. The modified MODYLAS could complete one MD single time-step calculation within 8.5 ms for the aforementioned large system. Additionally, the program contains numerous functions for material research that enable free energy calculations, along with the generation of various ensembles and molecular constraints.

1.
Y.
Andoh
et al,
J. Chem. Theory Comput.
9
,
3201
(
2013
).
2.
A.
Yonezawa
et al, in
SC‘11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE Press
,
2011
), pp.
1
.
3.
Y.
Andoh
et al,
J. Chem. Phys.
141
,
165101
(
2014
).
4.
K.
Fujimoto
et al,
J. Chem. Phys.
155
,
145101
(
2021
).
5.
M.
Sato
et al, in
SC'20: International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE Press
,
2020
), pp.
1
.
6.
Y.
Andoh
et al,
J. Comput. Chem.
42
,
1073
(
2021
).
7.
K. J.
Bowers
,
R. O.
Dror
, and
D. E.
Shaw
,
J. Chem. Phys.
124
,
184109
(
2006
).
8.
W.
Fong
and
E.
Darve
,
J. Comput. Phys.
228
,
8712
(
2009
).
9.
C. A.
White
and
M.
Head‐Gordon
,
J. Chem. Phys.
105
,
5061
(
1996
).
10.
H.
Cheng
,
L.
Greengard
, and
V.
Rokhlin
,
J. Comput. Phys.
155
,
468
(
1999
).
11.
H. Y.
Wang
and
R.
LeSar
,
J. Chem. Phys.
104
,
4173
(
1996
).
12.
K.
Nitadori
, arXiv:1409.5981 (
2014
).
13.
J.
Jung
et al,
J. Comput. Chem.
42
,
231
(
2021
).
14.
J. C.
Phillips
et al,
J. Chem. Phys.
153
,
044130
(
2020
).
15.
L. F.
Greengard
,
The Rapid Evaluation of Potential Fields in Particle Systems
(
MIT Press
,
Cambridge, MA
,
1988
).
16.
L.
Greengard
and
V.
Rokhlin
,
J. Comput. Phys.
73
,
325
(
1987
).
17.
R.
Zhou
and
B. J.
Berne
,
J. Chem. Phys.
103
,
9444
(
1995
).
18.
J. C.
Burant
et al,
Chem. Phys. Lett.
248
,
43
(
1996
).
19.
K. E.
Schmidt
and
M. A.
Lee
,
J. Stat. Phys.
63
,
1223
(
1991
).
20.
Y.
Andoh
,
N.
Yoshii
, and
S.
Okazaki
,
J. Comput. Chem.
41
,
1353
(
2020
).
21.
S.
Nosé
and
M. L.
Klein
,
Mol. Phys.
50
,
1055
(
1983
).
22.
23.
L. V.
Woodcock
,
Chem. Phys. Lett.
10
,
257
(
1971
).
24.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
25.
M.
Parrinello
and
A.
Rahman
,
Phys. Rev. Lett.
45
,
1196
(
1980
).
26.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
27.
S. W.
de Leeuw
et al,
Proc. R. Soc. London, Ser. A
373
,
27
(
1980
).
28.
U.
Essmann
et al,
J. Chem. Phys.
103
,
8577
(
1995
).
29.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
30.
F.
Figueirido
et al,
J. Chem. Phys.
106
,
9835
(
1997
).
31.
Y.
Andoh
et al,
J. Comput. Chem.
38
,
704
(
2017
).
32.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
33.
34.
35.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
36.
R. B.
Best
et al,
J. Chem. Theory Comput.
8
,
3257
(
2012
).
37.
38.
H. M. A. D. A.
Case
,
K.
Belfon
,
I. Y.
Ben-Shalom
,
J. T.
Berryman
,
S. R.
Brozell
,
D. S.
Cerutti
,
T. E.
Cheatham
III
,
G. A.
Cisneros
,
V. W. D.
Cruzeiro
,
T. A.
Darden
,
R. E.
Duke
,
G.
Giambasu
,
M. K.
Gilson
,
H.
Gohlke
,
A. W.
Goetz
,
R.
Harris
,
S.
Izadi
,
S. A.
Izmailov
,
K.
Kasavajhala
,
M. C.
Kaymak
,
E.
King
,
A.
Kovalenko
,
T.
Kurtzman
,
T. S.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
M.
Machado
,
V.
Man
,
M.
Manathunga
,
K. M.
Merz
,
Y.
Miao
,
O.
Mikhailovskii
,
G.
Monard
,
H.
Nguyen
,
K. A.
O’Hearn
,
A.
Onufriev
,
F.
Pan
,
S.
Pantano
,
R.
Qi
,
A.
Rahnamoun
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
S.
Schott-Verdugo
,
A.
Shajan
,
J.
Shen
,
C. L.
Simmerling
,
N. R.
Skrynnikov
,
J.
Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
J.
Wang
,
H.
Wei
,
R. M.
Wolf
,
X.
Wu
,
Y.
Xiong
,
Y.
Xue
,
D. M.
York
,
S.
Zhao
, and
P. A.
Kollman
,
Amber 2022
(
University of California
,
San Francisco
,
2022
).
39.
C.
Tian
et al,
J. Chem. Theory Comput.
16
,
528
(
2020
).
40.
M. J.
Robertson
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Chem. Theory Comput.
11
,
3499
(
2015
).
41.
H.
Sun
et al,
J. Am. Chem. Soc.
116
,
2978
(
1994
).
42.
K.
Fujimoto
,
N.
Yoshii
, and
S.
Okazaki
,
J. Chem. Phys.
133
,
074511
(
2010
).
43.
K.
Fujimoto
,
N.
Yoshii
, and
S.
Okazaki
,
J. Chem. Phys.
136
,
014511
(
2012
).
44.
W.
Shinoda
,
Biochim. Biophys. Acta
1858
,
2254
(
2016
).
45.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed.,
Computational Science Series
(
Academic Press
,
San Diego
,
2001
), p.
1
.
46.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
47.
48.
T.
Nagai
,
K.
Fujimoto
, and
S.
Okazaki
,
J. Chem. Phys.
156
,
044507
(
2022
).
49.
T.
Nagai
and
S.
Okazaki
,
J. Chem. Phys.
157
,
054502
(
2022
).
50.
T.
Nagai
et al,
J. Chem. Theory Comput.
16
,
7239
(
2020
).
51.
T.
Nagai
,
A.
Yoshimori
, and
S.
Okazaki
,
J. Chem. Phys.
156
,
154506
(
2022
).
52.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
2000
).
53.
M.
Praprotnik
and
D.
Janežič
,
J. Chem. Phys.
122
,
174103
(
2005
).
54.
B.
Guillot
,
J. Chem. Phys.
95
,
1543
(
1991
).
55.
B.
Boulard
et al,
J. Non-Cryst. Solids
140
,
350
(
1992
).
56.
57.
Z.
Tang
,
K.
Fujimoto
, and
S.
Okazaki
,
Polymer
207
,
122908
(
2020
).
58.
Z.
Tang
,
K.
Fujimoto
, and
S.
Okazaki
,
Polymer
226
,
123809
(
2021
).
59.
M. R.
Shirts
et al,
J. Comput. Aided Mol. Des.
31
,
147
(
2017
).
60.
J. V.
Vermaas
et al,
J. Chem. Inf. Model.
56
,
1112
(
2016
).
61.
A. W.
Sousa da Silva
and
W. F.
Vranken
,
BMC Res. Notes
5
,
367
(
2012
).
62.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
63.
Y.
Nakamura
, in
The 7th meeting for application code tuning on A64FX computer systems
,
2022
.

Supplementary Material

You do not currently have access to this content.