Multiple ERI (Electron Repulsion Integral) tensor contractions (METC) with several matrices are ubiquitous in quantum chemistry. In response theories, the contraction operation, rather than ERI computations, can be the major bottleneck, as its computational demands are proportional to the multiplicatively combined contributions of the number of excited states and the kernel pre-factors. This paper presents several high-performance strategies for METC. Optimal approaches involve either the data layout reformations of interim density and Fock matrices, the introduction of intermediate ERI quartet buffer, and loop-reordering optimization for a higher cache hit rate. The combined strategies remarkably improve the performance of the MRSF (mixed reference spin flip)-TDDFT (time-dependent density functional theory) by nearly 300%. The results of this study are not limited to the MRSF-TDDFT method and can be applied to other METC scenarios.

1.
G. J.
Hedley
,
A.
Ruseckas
, and
I. D. W.
Samuel
, “
Light harvesting for organic photovoltaics
,”
Chem. Rev.
117
,
796
837
(
2017
).
2.
A.
Endo
,
M.
Ogasawara
,
A.
Takahashi
,
D.
Yokoyama
,
Y.
Kato
, and
C.
Adachi
, “
Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—A novel mechanism for electroluminescence
,”
Adv. Mater.
21
,
4802
4806
(
2009
).
3.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
(
1984
).
4.
M. E.
Casida
, “
Density-functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
, edited by D. P. Chong (
World Scientific
, Singapore,
1995
), Vol. 1, pp.
155
192
.
5.
M. E.
Casida
and
M.
Huix-Rotllant
, “
Progress in time-dependent density-functional theory
,”
Annu. Rev. Phys. Chem.
63
,
287
323
(
2012
).
6.
R.
McWeeny
and
B.
Sutcliffe
,
Methods of Molecular Quantum Mechanics
(
Academic Press
,
1992
).
7.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
, “
Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange
,”
J. Chem. Phys.
119
,
2943
2946
(
2003
).
8.
A.
Dreuw
and
M.
Head-Gordon
, “
Single-reference ab initio methods for the calculation of excited states of large molecules
,”
Chem. Rev.
105
,
4009
4037
(
2005
).
9.
P.
Dev
,
S.
Agrawal
, and
N. J.
English
, “
Determining the appropriate exchange-correlation functional for time-dependent density functional theory studies of charge-transfer excitations in organic dyes
,”
J. Chem. Phys.
136
,
224301
(
2012
).
10.
N. T.
Maitra
, “
Undoing static correlation: Long-range charge transfer in time-dependent density-functional theory
,”
J. Chem. Phys.
122
,
234104
(
2005
).
11.
E. J.
Baerends
,
O. V.
Gritsenko
, and
R.
van Meer
, “
The Kohn–Sham gap, the fundamental gap and the optical gap: The physical meaning of occupied and virtual Kohn–Sham orbital energies
,”
Phys. Chem. Chem. Phys.
15
,
16408
16425
(
2013
).
12.
R. J.
Cave
,
F.
Zhang
,
N. T.
Maitra
, and
K.
Burke
, “
A dressed TDDFT treatment of the 21Ag states of butadiene and hexatriene
,”
Chem. Phys. Lett.
389
,
39
42
(
2004
).
13.
J.
Neugebauer
,
E. J.
Baerends
, and
M.
Nooijen
, “
Vibronic coupling and double excitations in linear response time-dependent density functional calculations: Dipole-allowed states of N2
,”
J. Chem. Phys.
121
,
6155
6166
(
2004
).
14.
N. T.
Maitra
,
F.
Zhang
,
R. J.
Cave
, and
K.
Burke
, “
Double excitations within time-dependent density functional theory linear response
,”
J. Chem. Phys.
120
,
5932
5937
(
2004
).
15.
F.
Aryasetiawan
,
O.
Gunnarsson
, and
A.
Rubio
, “
Excitation energies from time-dependent density-functional formalism for small systems
,”
Europhys. Lett.
57
,
683
(
2002
).
16.
M.
Filatov
, “
Ensemble DFT approach to excited states of strongly correlated molecular systems
,” in
Density-Functional Methods for Excited States
, edited by N. Ferré, M. Filatov, and M. Huix-Rotllant (
Springer International Publishing, Cham
,
2016
), pp.
97
124
.
17.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
MartÍnez
, “
Conical intersections and double excitations in time-dependent density functional theory
,”
Mol. Phys.
104
,
1039
1051
(
2006
).
18.
M.
Huix-Rotllant
,
M.
Filatov
,
S.
Gozem
,
I.
Schapiro
,
M.
Olivucci
, and
N.
Ferré
, “
Assessment of density functional theory for describing the correlation effects on the ground and excited state potential energy surfaces of a retinal chromophore model
,”
J. Chem. Theory Comput.
9
,
3917
3932
(
2013
).
19.
S.
Gozem
,
F.
Melaccio
,
A.
Valentini
,
M.
Filatov
,
M.
Huix-Rotllant
,
N.
Ferré
,
L. M.
Frutos
,
C.
Angeli
,
A. I.
Krylov
,
A. A.
Granovsky
et al, “
Shape of multireference, equation-of-motion coupled-cluster, and density functional theory potential energy surfaces at a conical intersection
,”
J. Chem. Theory Comput.
10
,
3074
3084
(
2014
).
20.
N.
Ferré
,
M.
Filatov
,
M.
Huix-Rotllant
, and
C.
Adamo
,
Density-Functional Methods for Excited States
(
Springer
,
2016
), Vol.
368
.
21.
W.
Park
,
J.
Shen
,
S.
Lee
,
P.
Piecuch
,
M.
Filatov
, and
C. H.
Choi
, “
Internal conversion between bright (11Bu+) and dark (21Ag) states in s-trans-butadiene and s-trans-hexatriene
,”
J. Phys. Chem. Lett.
12
,
9720
9729
(
2021
).
22.
Z.
Li
and
W.
Liu
, “
Theoretical and numerical assessments of spin-flip time-dependent density functional theory
,”
J. Chem. Phys.
136
,
024107
(
2012
).
23.
F.
Wang
and
T.
Ziegler
, “
Time-dependent density functional theory based on a noncollinear formulation of the exchange-correlation potential
,”
J. Chem. Phys.
121
,
12191
12196
(
2004
).
24.
Y.
Shao
,
M.
Head-Gordon
, and
A. I.
Krylov
, “
The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals
,”
J. Chem. Phys.
118
,
4807
4818
(
2003
).
25.
J. S.
Sears
,
C. D.
Sherrill
, and
A. I.
Krylov
, “
A spin-complete version of the spin-flip approach to bond breaking: What is the impact of obtaining spin eigenfunctions?
,”
J. Chem. Phys.
118
,
9084
9094
(
2003
).
26.
J.
Mato
and
M. S.
Gordon
, “
A general spin-complete spin-flip configuration interaction method
,”
Phys. Chem. Chem. Phys.
20
,
2615
2626
(
2018
).
27.
J.
Mato
and
M. S.
Gordon
, “
Analytic non-adiabatic couplings for the spin-flip ORMAS method
,”
Phys. Chem. Chem. Phys.
22
,
1475
1484
(
2020
).
28.
M. E.
Casida
, “
Propagator corrections to adiabatic time-dependent density-functional theory linear response theory
,”
J. Chem. Phys.
122
,
054111
(
2005
).
29.
X.
Zhang
and
J. M.
Herbert
, “
Spin-flip, tensor equation-of-motion configuration interaction with a density-functional correction: A spin-complete method for exploring excited-state potential energy surfaces
,”
J. Chem. Phys.
143
,
234107
(
2015
).
30.
S.
Lee
,
M.
Filatov
,
S.
Lee
, and
C. H.
Choi
, “
Eliminating spin-contamination of spin-flip time dependent density functional theory within linear response formalism by the use of zeroth-order mixed-reference (MR) reduced density matrix
,”
J. Chem. Phys.
149
,
104101
(
2018
).
31.
S.
Lee
,
E. E.
Kim
,
H.
Nakata
,
S.
Lee
, and
C. H.
Choi
, “
Efficient implementations of analytic energy gradient for mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT)
,”
J. Chem. Phys.
150
,
184111
(
2019
).
32.
S.
Lee
,
S.
Shostak
,
M.
Filatov
, and
C. H.
Choi
, “
Conical intersections in organic molecules: Benchmarking mixed-reference spin-flip time-dependent DFT (MRSF-TD-DFT) vs spin-flip TD-DFT
,”
J. Phys. Chem. A
123
,
6455
6462
(
2019
).
33.
Y.
Horbatenko
,
S.
Sadiq
,
S.
Lee
,
M.
Filatov
, and
C. H.
Choi
, “
Mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) as a simple yet accurate method for diradicals and diradicaloids
,”
J. Chem. Theory Comput.
17
,
848
859
(
2021
).
34.
S.
Lee
,
E.
Kim
,
S.
Lee
, and
C. H.
Choi
, “
Fast overlap evaluations for nonadiabatic molecular dynamics simulations: Applications to SF-TDDFT and TDDFT
,”
J. Chem. Theory Comput.
15
,
882
(
2019
).
35.
Y.
Horbatenko
,
S.
Lee
,
M.
Filatov
, and
C. H.
Choi
, “
Performance analysis and optimization of mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) for vertical excitation energies and singlet–triplet energy gaps
,”
J. Phys. Chem. A
123
,
7991
(
2019
).
36.
S.
Lee
,
Y.
Horbatenko
,
M.
Filatov
, and
C. H.
Choi
, “
Fast and accurate computation of nonadiabatic coupling matrix elements using the truncated Leibniz formula and mixed-reference spin-flip time-dependent density functional theory
,”
J. Phys. Chem. Lett.
12
,
4722
4728
(
2021
).
37.
Y. S.
Baek
,
S.
Lee
,
M.
Filatov
, and
C. H.
Choi
, “
Optimization of three state conical intersections by adaptive penalty function algorithm in connection with the mixed-reference spin-flip time-dependent density functional theory method (MRSF-TDDFT)
,”
J. Phys. Chem. A
125
,
1994
2006
(
2021
).
38.
V.
Pomogaev
,
S.
Lee
,
S.
Shaik
,
M.
Filatov
, and
C. H.
Choi
, “
Exploring Dyson’s orbitals and their electron binding energies for conceptualizing excited states from response methodology
,”
J. Phys. Chem. Lett.
12
,
9963
9972
(
2021
).
39.
Y.
Horbatenko
,
S.
Lee
,
M.
Filatov
, and
C. H.
Choi
, “
How beneficial is the explicit account of doubly-excited configurations in linear response theory?
,”
J. Chem. Theory Comput.
17
,
975
984
(
2021
).
40.
H.
Kim
,
W.
Park
,
Y.
Kim
,
M.
Filatov
,
C. H.
Choi
, and
D.
Lee
, “
Relief of excited-state antiaromaticity enables the smallest red emitter
,”
Nat. Commun.
12
,
5409
(
2021
).
41.
W.
Park
,
S.
Lee
,
M.
Huix-Rotllant
,
M.
Filatov
, and
C. H.
Choi
, “
Impact of the dynamic electron correlation on the unusually long excited-state lifetime of thymine
,”
J. Phys. Chem. Lett.
12
,
4339
4346
(
2021
).
42.
S.
Lee
,
W.
Park
,
H.
Nakata
,
M.
Filatov
, and
C. H.
Choi
, “
Recent advances in ensemble density functional theory and linear response theory for strong correlation
,”
Bull. Korean Chem. Soc.
43
,
17
34
(
2022
).
43.
W.
Park
,
J.
Shen
,
S.
Lee
,
P.
Piecuch
,
T.
Joo
,
M.
Filatov
, and
C. H.
Choi
, “
Dual fluorescence of octatetraene hints at a novel type of singlet-to-singlet thermally activated delayed fluorescence process
,”
J. Phys. Chem. C
126
,
14976
(
2022
).
44.
W.
Park
,
M.
Filatov
,
S.
Sadiq
,
I.
Gerasimov
,
S.
Lee
,
T.
Joo
, and
C. H.
Choi
, “
A plausible mechanism of uracil photohydration involves an unusual intermediate
,”
J. Phys. Chem. Lett.
13
,
7072
7080
(
2022
).
45.
M.
Huix-Rotllant
,
K.
Schwinn
,
V.
Pomogaev
,
M.
Farmani
,
N.
Ferré
,
S.
Lee
, and
C. H.
Choi
, “
Photochemistry of thymine in solution and DNA revealed by an electrostatic embedding QM/MM combined with mixed-reference spin-flip TDDFT
,”
J. Chem. Theory Comput.
19
,
147
(
2022
).
46.
S.
Lee
,
W.
Park
,
H.
Nakata
,
M.
Filatov
, and
C. H.
Choi
, “
Mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) as a method of choice for nonadiabatic molecular dynamics
,” in
Time-Dependent Density Functional Theory
(
Jenny Stanford Publishing
,
2023
), pp.
101
139
.
47.
S.
Shostak
,
W.
Park
,
J.
Oh
,
J.
Kim
,
S.
Lee
,
H.
Nam
,
M.
Filatov
,
D.
Kim
, and
C. H.
Choi
, “
Ultrafast excited state aromatization in dihydroazulene
,”
J. Am. Chem. Soc.
145
,
1638
(
2023
).
48.
S.
Sadiq
,
W.
Park
,
V.
Mironov
,
S.
Lee
,
M.
Filatov
, and
C. H.
Choi
, “
Prototropically controlled dynamics of cytosine photodecay
,”
J. Phys. Chem. Lett.
14
,
791
797
(
2023
).
49.
K.
Komarov
,
W.
Park
,
S.
Lee
,
T.
Zeng
, and
C. H.
Choi
, “
Accurate spin-orbit coupling by relativistic mixed-reference spin-flip-TDDFT
,”
J. Chem. Theory. Comput.
19
,
953
(
2023
).
50.
A.
Japahuge
,
S.
Lee
,
C. H.
Choi
, and
T.
Zeng
, “
Design of singlet fission chromophores with cyclic (alkyl)(amino) carbene building blocks
,”
J. Chem. Phys.
150
,
234306
(
2019
).
51.
E.
Pradhan
,
S.
Lee
,
C. H.
Choi
, and
T.
Zeng
, “
Diboron- and diaza-doped anthracenes and phenanthrenes: Their electronic structures for being singlet fission chromophores
,”
J. Phys. Chem. A
124
,
8159
8172
(
2020
).
52.
D.
James
,
E.
Pradhan
,
S.
Lee
,
C. H.
Choi
, and
T.
Zeng
, “
Dicarbonyl anthracenes and phenanthrenes as singlet fission chromophores
,”
Can. J. Chem.
100
,
520
(
2022
).
53.
Z.
Rinkevicius
,
X.
Li
,
O.
Vahtras
,
K.
Ahmadzadeh
,
M.
Brand
,
M.
Ringholm
,
N. H.
List
,
M.
Scheurer
,
M.
Scott
,
A.
Dreuw
et al, “
VeloxChem: A python-driven density-functional theory program for spectroscopy simulations in high-performance computing environments
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1457
(
2020
).
54.
D. R.
Rehn
,
Z.
Rinkevicius
,
M. F.
Herbst
,
X.
Li
,
M.
Scheurer
,
M.
Brand
,
A. L.
Dempwolff
,
I. E.
Brumboiu
,
T.
Fransson
,
A.
Dreuw
et al, “
Gator: A Python-driven program for spectroscopy simulations using correlated wave functions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1528
(
2021
).
55.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
56.
J.
Olsen
,
H. J. A.
Jensen
, and
P.
Jørgensen
, “
Solution of the large matrix equations which occur in response theory
,”
J. Comput. Phys.
74
,
265
282
(
1988
).
57.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
, “
An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules
,”
J. Chem. Phys.
109
,
8218
8224
(
1998
).
58.
M.
Häser
and
R.
Ahlrichs
, “
Improvements on the direct SCF method
,”
J. Comput. Chem.
10
,
104
111
(
1989
).
59.
J.
Almlöf
and
P. R.
Taylors
, “
Computational aspects of direct SCF and MCSCF methods
,” in
Advanced Theories and Computational Approaches to the Electronic Structure of Molecules
(
Springer
,
1984
), pp.
107
125
.
60.
J.
Almlöf
,
K.
Faegri
, and
K.
Korsell
, “
Principles for a direct SCF approach to LCAO-MO ab-initio calculations
,”
J. Comput. Chem.
3
,
385
399
(
1982
).
61.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
, “
Recent developments in the general atomic and molecular electronic structure system
,”
J. Chem. Phys.
152
,
154102
(
2020
).
62.
C.
Hong
,
W.
Bao
,
A.
Cohen
,
S.
Krishnamoorthy
,
L.-N.
Pouchet
,
F.
Rastello
,
J.
Ramanujam
, and
P.
Sadayappan
, “
Effective padding of multidimensional arrays to avoid cache conflict misses
,”
ACM SIGPLAN Not.
51
,
129
144
(
2016
).
63.
V.
Mironov
,
A.
Moskovsky
, and
Y.
Alexeev
, “
Power measurements of Hartree-Fock algorithms using different storage devices
,” in
2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
(
IEEE
,
2017
), pp.
1004
1011
.

Supplementary Material

You do not currently have access to this content.