Leveraging the anisotropic shape of DNA-functionalized nanoparticles holds potential for shape-directed crystallization of a wide collection of superlattice structures. Using coarse-grained molecular dynamics simulations, we study the self-assembly of a binary mixture of cubic gold nanoparticles, which are functionalized by complementary DNA strands. We observe the spontaneous self-assembly of simple cubic (SC), plastic body-centered tetragonal (pBCT), and compositionally disordered plastic body-centered tetragonal (d-pBCT) phases due to hybridization of the DNA strands. We systematically investigate the effect of length, grafting density, as well as rigidity of the DNA strands on the self-assembly behavior of cubic nanoparticles. We measure the potential of mean force between DNA-functionalized nanocubes for varying rigidity of the DNA strands and DNA lengths. Using free-energy calculations, we find that longer and flexible DNA strands can lead to a phase transformation from SC to the pBCT phase due to a gain in entropy arising from the orientational degrees of freedom of the nanocubes in the pBCT phase. Our results may serve as a guide for self-assembly experiments on DNA-functionalized cubic nanoparticles.

1.
M.
Dijkstra
and
E.
Luijten
, “
From predictive modelling to machine learning and reverse engineering of colloidal self-assembly
,”
Nat. Mater.
20
,
762
773
(
2021
).
2.
L.
Adler-Abramovich
,
N.
Kol
,
I.
Yanai
,
D.
Barlam
,
R. Z.
Shneck
,
E.
Gazit
, and
I.
Rousso
, “
Self-assembled organic nanostructures with metallic-like stiffness
,”
Angew. Chem., Int. Ed.
122
,
10135
10138
(
2010
).
3.
X.-B.
Li
,
Y.-J.
Gao
,
Y.
Wang
,
F.
Zhan
,
X.-Y.
Zhang
,
Q.-Y.
Kong
,
N.-J.
Zhao
,
Q.
Guo
,
H.-L.
Wu
,
Z.-J.
Li
et al, “
Self-assembled framework enhances electronic communication of ultrasmall-sized nanoparticles for exceptional solar hydrogen evolution
,”
J. Am. Chem. Soc.
139
,
4789
4796
(
2017
).
4.
J. F.
Shin
,
W.
Xu
,
M.
Zanella
,
K.
Dawson
,
S. N.
Savvin
,
J. B.
Claridge
, and
M. J.
Rosseinsky
, “
Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells
,”
Nat. Energy
2
,
16214
(
2017
).
5.
Y. D.
Park
,
A. T.
Hanbicki
,
S. C.
Erwin
,
C. S.
Hellberg
,
J. M.
Sullivan
,
J. E.
Mattson
,
T. F.
Ambrose
,
A.
Wilson
,
G.
Spanos
, and
B. T.
Jonker
, “
A group-IV ferromagnetic semiconductor: MnxGe1−x
,”
Science
295
,
651
654
(
2002
).
6.
H.
Wu
,
G.
Chan
,
J. W.
Choi
,
I.
Ryu
,
Y.
Yao
,
M. T.
McDowell
,
S. W.
Lee
,
A.
Jackson
,
Y.
Yang
,
L.
Hu
and
Y.
Cui
, “
Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
,”
Nat. Nanotechnol.
7
,
310
315
(
2012
).
7.
C. A.
Mirkin
, “
The polyvalent gold nanoparticle conjugate—Materials synthesis, biodiagnostics, and intracellular gene regulation
,”
MRS Bull.
35
,
532
539
(
2010
).
8.
U.
Agarwal
and
F. A.
Escobedo
, “
Mesophase behaviour of polyhedral particles
,”
Nat. Mater.
10
,
230
235
(
2011
).
9.
P. F.
Damasceno
,
M.
Engel
, and
S. C.
Glotzer
, “
Predictive self-assembly of polyhedra into complex structures
,”
Science
337
,
453
457
(
2012
).
10.
M.
Dijkstra
, “
Entropy-driven phase transitions in colloids: From spheres to anisotropic particles
,”
Adv. Chem. Phys.
156
,
35
(
2014
).
11.
M. A.
Boles
,
M.
Engel
, and
D. V.
Talapin
, “
Self-assembly of colloidal nanocrystals: From intricate structures to functional materials
,”
Chem. Rev.
116
,
11220
11289
(
2016
).
12.
S.
Torquato
and
Y.
Jiao
, “
Dense packings of the platonic and archimedean solids
,”
Nature
460
,
876
879
(
2009
).
13.
J.
de Graaf
,
R.
van Roij
, and
M.
Dijkstra
, “
Dense regular packings of irregular nonconvex particles
,”
Phys. Rev. Lett.
107
,
155501
(
2011
).
14.
J.
de Graaf
,
L.
Filion
,
M.
Marechal
,
R.
van Roij
, and
M.
Dijkstra
, “
Crystal-structure prediction via the floppy-box Monte Carlo algorithm: Method and application to hard (non) convex particles
,”
J. Chem. Phys.
137
,
214101
(
2012
).
15.
C. A.
Mirkin
,
R. L.
Letsinger
,
R. C.
Mucic
, and
J. J.
Storhoff
, “
A DNA-based method for rationally assembling nanoparticles into macroscopic materials
,”
Nature
382
,
607
609
(
1996
).
16.
A. P.
Alivisatos
,
K. P.
Johnsson
,
X.
Peng
,
T. E.
Wilson
,
C. J.
Loweth
,
M. P.
Bruchez
, and
P. G.
Schultz
, “
Organization of “nanocrystal molecules” using DNA
,”
Nature
382
,
609
611
(
1996
).
17.
D.
Nykypanchuk
,
M. M.
Maye
,
D.
van der Lelie
, and
O.
Gang
, “
DNA-guided crystallization of colloidal nanoparticles
,”
Nature
451
,
549
552
(
2008
).
18.
R. J.
Macfarlane
,
B.
Lee
,
M. R.
Jones
,
N.
Harris
,
G. C.
Schatz
, and
C. A.
Mirkin
, “
Nanoparticle superlattice engineering with DNA
,”
Science
334
,
204
208
(
2011
).
19.
M. R.
Jones
,
R. J.
Macfarlane
,
B.
Lee
,
J.
Zhang
,
K. L.
Young
,
A. J.
Senesi
, and
C. A.
Mirkin
, “
DNA-nanoparticle superlattices formed from anisotropic building blocks
,”
Nat. Mater.
9
,
913
917
(
2010
).
20.
C. R.
Laramy
,
M. N.
O’Brien
, and
C. A.
Mirkin
, “
Crystal engineering with DNA
,”
Nat. Rev. Mater.
4
,
201
224
(
2019
).
21.
W. B.
Rogers
,
W. M.
Shih
, and
V. N.
Manoharan
, “
Using DNA to program the self-assembly of colloidal nanoparticles and microparticles
,”
Nat. Rev. Mater.
1
,
16008
(
2016
).
22.
M.
Girard
,
S.
Wang
,
J. S.
Du
,
A.
Das
,
Z.
Huang
,
V. P.
Dravid
,
B.
Lee
,
C. A.
Mirkin
, and
M.
Olvera de la Cruz
, “
Particle analogs of electrons in colloidal crystals
,”
Science
364
,
1174
1178
(
2019
).
23.
X.
Zhou
,
D.
Yao
,
W.
Hua
,
N.
Huang
,
X.
Chen
,
L.
Li
,
M.
He
,
Y.
Zhang
,
Y.
Guo
,
S.
Xiao
et al, “
Programming colloidal bonding using DNA strand-displacement circuitry
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
5617
5623
(
2020
).
24.
W. B.
Rogers
and
V. N.
Manoharan
, “
Programming colloidal phase transitions with DNA strand displacement
,”
Science
347
,
639
642
(
2015
).
25.
Q.
Yu
,
X.
Zhang
,
Y.
Hu
,
Z.
Zhang
, and
R.
Wang
, “
Dynamic properties of DNA-programmable nanoparticle crystallization
,”
ACS Nano
10
,
7485
7492
(
2016
).
26.
C.
Knorowski
,
S.
Burleigh
, and
A.
Travesset
, “
Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization
,”
Phys. Rev. Lett.
106
,
215501
(
2011
).
27.
T. I. N. G.
Li
,
R.
Sknepnek
, and
M.
Olvera de la Cruz
, “
Thermally active hybridization drives the crystallization of DNA-functionalized nanoparticles
,”
J. Am. Chem. Soc.
135
,
8535
8541
(
2013
).
28.
T. I. N. G.
Li
,
R.
Sknepnek
,
R. J.
Macfarlane
,
C. A.
Mirkin
, and
M.
Olvera de la Cruz
, “
Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations
,”
Nano Lett.
12
,
2509
2514
(
2012
).
29.
G.
Zhu
,
Z.
Xu
,
Y.
Yang
,
X.
Dai
, and
L.-T.
Yan
, “
Hierarchical crystals formed from DNA-functionalized Janus nanoparticles
,”
ACS Nano
12
,
9467
9475
(
2018
).
30.
M. N.
O’Brien
,
M. R.
Jones
,
B.
Lee
, and
C. A.
Mirkin
, “
Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization
,”
Nat. Mater.
14
,
833
839
(
2015
).
31.
R. N.
Kress
and
M. R.
Jones
, “
Colloidal interactions get patchy and directional
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
15382
15384
(
2020
).
32.
F.
Smallenburg
,
L.
Filion
,
M.
Marechal
, and
M.
Dijkstra
, “
Vacancy-stabilized crystalline order in hard cubes
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
17886
17890
(
2012
).
33.
A. P.
Gantapara
,
J.
de Graaf
,
R.
van Roij
, and
M.
Dijkstra
, “
Phase diagram and structural diversity of a family of truncated cubes: Degenerate close-packed structures and vacancy-rich states
,”
Phys. Rev. Lett.
111
,
015501
(
2013
).
34.
A. P.
Gantapara
,
J.
de Graaf
,
R.
van Roij
, and
M.
Dijkstra
, “
Phase behavior of a family of truncated hard cubes
,”
J. Chem. Phys.
142
,
054904
(
2015
).
35.
R. D.
Batten
,
F. H.
Stillinger
, and
S.
Torquato
, “
Phase behavior of colloidal superballs: Shape interpolation from spheres to cubes
,”
Phys. Rev. E
81
,
061105
(
2010
).
36.
R.
Ni
,
A. P.
Gantapara
,
J.
Dde Graaf
,
R.
van Roij
, and
M.
Dijkstra
, “
Phase diagram of colloidal hard superballs: From cubes via spheres to octahedra
,”
Soft Matter
8
,
8826
8834
(
2012
).
37.
L.
Rossi
,
S.
Sacanna
,
W. T. M.
Irvine
,
P. M.
Chaikin
,
D. J.
Pine
, and
A. P.
Philipse
, “
Cubic crystals from cubic colloids
,”
Soft Matter
7
,
4139
4142
(
2011
).
38.
J.-M.
Meijer
,
A.
Pal
,
S.
Ouhajji
,
H. N.
Lekkerkerker
,
A. P.
Philipse
, and
A. V.
Petukhov
, “
Observation of solid–solid transitions in 3D crystals of colloidal superballs
,”
Nat. Commun.
8
,
14352
(
2017
).
39.
J.
Henzie
,
M.
Grünwald
,
A.
Widmer-Cooper
,
P. L.
Geissler
, and
P.
Yang
, “
Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices
,”
Nat. Mater.
11
,
131
137
(
2012
).
40.
C.
Avci
,
I.
Imaz
,
A.
Carné-Sánchez
,
J. A.
Pariente
,
N.
Tasios
,
J.
Pérez-Carvajal
,
M. I.
Alonso
,
A.
Blanco
,
M.
Dijkstra
,
C.
López
and
D.
Maspoch
, “
Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures
,”
Nat. Chem.
10
,
78
84
(
2018
).
41.
A.
Klinkova
,
H.
Thérien-Aubin
,
A.
Ahmed
,
D.
Nykypanchuk
,
R. M.
Choueiri
,
B.
Gagnon
,
A.
Muntyanu
,
O.
Gang
,
G. C.
Walker
, and
E.
Kumacheva
, “
Structural and optical properties of self-assembled chains of plasmonic nanocubes
,”
Nano Lett.
14
,
6314
6321
(
2014
).
42.
B.
Gao
,
G.
Arya
, and
A. R.
Tao
, “
Self-orienting nanocubes for the assembly of plasmonic nanojunctions
,”
Nat. Nanotechnol.
7
,
433
437
(
2012
).
43.
K. L.
Gurunatha
,
S.
Marvi
,
G.
Arya
, and
A. R.
Tao
, “
Computationally guided assembly of oriented nanocubes by modulating grafted polymer–surface interactions
,”
Nano Lett.
15
,
7377
7382
(
2015
).
44.
W. H.
Evers
,
B.
Goris
,
S.
Bals
,
M.
Casavola
,
J.
De Graaf
,
R.
van Roij
,
M.
Dijkstra
, and
D.
Vanmaekelbergh
, “
Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment
,”
Nano Lett.
13
,
2317
2323
(
2013
).
45.
J. J.
Geuchies
,
C.
Van Overbeek
,
W. H.
Evers
,
B.
Goris
,
A.
De Backer
,
A. P.
Gantapara
,
F. T.
Rabouw
,
J.
Hilhorst
,
J. L.
Peters
,
O.
Konovalov
et al, “
In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals
,”
Nat. Mater.
15
,
1248
1254
(
2016
).
46.
C.
Anzivino
,
G.
Soligno
,
R.
van Roij
, and
M.
Dijkstra
, “
Chains of cubic colloids at fluid–fluid interfaces
,”
Soft Matter
17
,
965
975
(
2021
).
47.
G.
Soligno
and
D.
Vanmaekelbergh
, “
Understanding the formation of PbSe honeycomb superstructures by dynamics simulations
,”
Phys. Rev. X
9
,
021015
(
2019
).
48.
G.
Soligno
,
M.
Dijkstra
, and
R.
van Roij
, “
Self-assembly of cubic colloidal particles at fluid–fluid interfaces by hexapolar capillary interactions
,”
Soft Matter
14
,
42
60
(
2018
).
49.
G.
Soligno
,
M.
Dijkstra
, and
R.
van Roij
, “
Self-assembly of cubes into 2D hexagonal and honeycomb lattices by hexapolar capillary interactions
,”
Phys. Rev. Lett.
116
,
258001
(
2016
).
50.
M. N.
O’Brien
,
M.
Girard
,
H.-X.
Lin
,
J. A.
Millan
,
M.
Olvera de la Cruz
,
B.
Lee
, and
C. A.
Mirkin
, “
Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
10485
10490
(
2016
).
51.
F.
Lu
,
T.
Vo
,
Y.
Zhang
,
A.
Frenkel
,
K. G.
Yager
,
S.
Kumar
, and
O.
Gang
, “
Unusual packing of soft-shelled nanocubes
,”
Sci. Adv.
5
,
eaaw2399
(
2019
).
52.
J. A.
Anderson
,
C. D.
Lorenz
, and
A.
Travesset
, “
General purpose molecular dynamics simulations fully implemented on graphics processing units
,”
J. Chem. Phys.
227
, 5342–5359 (
2008
).
53.
T. D.
Nguyen
,
C. L.
Phillips
,
J. A.
Anderson
, and
S. C.
Glotzer
, “
Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units
,”
Comput. Phys. Commun.
182
,
2307
2313
(
2011
).
54.
J. A.
Anderson
,
J.
Glaser
, and
S. C.
Glotzer
, “
HOOMD-blue: A python package for high-performance molecular dynamics and hard particle Monte Carlo simulations
,”
Comput. Mater. Sci.
173
,
109363
(
2020
).
55.
P.
Bartlett
and
A. I.
Campbell
, “
Three-dimensional binary superlattices of oppositely charged colloids
,”
Phys. Rev. Lett.
95
,
128302
(
2005
).
56.
R.
Mao
,
J.
O’Leary
,
A.
Mesbah
, and
J.
Mittal
, “
A deep learning framework discovers compositional order and self-assembly pathways in binary colloidal mixtures
,”
JACS Au.
2
,
1818
1828
(
2022
).
57.
G.
Hou
,
X.
Xia
,
J.
Liu
,
W.
Wang
,
M.
Dong
, and
L.
Zhang
, “
Designing superlattice structure via self-assembly of one-component polymer-grafted nanoparticles
,”
J. Phys. Chem. B
123
,
2157
2168
(
2019
).
58.
M. X.
Wang
,
J. D.
Brodin
,
J. A.
Millan
,
S. E.
Seo
,
M.
Girard
,
M.
Olvera de la Cruz
,
B.
Lee
, and
C. A.
Mirkin
, “
Altering DNA-programmable colloidal crystallization paths by modulating particle repulsion
,”
Nano Lett.
17
,
5126
5132
(
2017
).
59.
P. D.
Duncan
,
M.
Dennison
,
A. J.
Masters
, and
M. R.
Wilson
, “
Theory and computer simulation for the cubatic phase of cut spheres
,”
Phys. Rev. E
79
,
031702
(
2009
).
60.
R. V.
Thaner
,
Y.
Kim
,
T. I. N. G.
Li
,
R. J.
Macfarlane
,
S. T.
Nguyen
,
M.
Olvera de la Cruz
, and
C. A.
Mirkin
, “
Entropy-driven crystallization behavior in DNA-mediated nanoparticle assembly
,”
Nano Lett.
15
,
5545
5551
(
2015
).
61.
E. J.
Meijer
,
D.
Frenkel
,
R. A.
LeSar
, and
A. J. C.
Ladd
, “
Location of melting point at 300 K of nitrogen by Monte Carlo simulation
,”
J. Chem. Phys.
92
,
7570
7575
(
1990
).
62.
Z.
Fan
and
M.
Grünwald
, “
Orientational order in self-assembled nanocrystal superlattices
,”
J. Am. Chem. Soc.
141
,
1980
1988
(
2019
).
63.
M. P.
Howard
,
A. Z.
Panagiotopoulos
, and
A.
Nikoubashman
, “
Efficient mesoscale hydrodynamics: Multiparticle collision dynamics with massively parallel GPU acceleration
,”
Comput. Phys. Commun.
230
,
10
20
(
2018
).
You do not currently have access to this content.