We generalize a microscopic statistical mechanical theory of the activated dynamics of dilute spherical penetrants in glass-forming liquids to study the influence of crosslinking in polymer networks on the penetrant relaxation time and diffusivity over a wide range of temperature and crosslink fraction (fn). Our calculations are relevant to recent experimental studies of a nm-sized molecule diffusing in poly-(n-butyl methacrylate) networks. The theory predicts the penetrant relaxation time increases exponentially with the glass transition temperature, Tg(fn), which grows roughly linearly with the square root of fn due to the coupling of local hopping to longer-range collective elasticity. Moreover, Tg is also found to be proportional to a geometric confinement parameter defined as the ratio of the penetrant diameter to the mean network mesh size. The decoupling ratio of the penetrant and Kuhn segment alpha times displays a complex non-monotonic dependence on fn and temperature that is well collapsed based on the variable Tg(fn)/T. A model for the penetrant diffusion constant that combines activated relaxation and entropic mesh confinement is proposed, which results in a significantly stronger suppression of mass transport with degree of effective supercooling than predicted for the penetrant alpha time. This behavior corresponds to a new network-based type of “decoupling” of diffusion and relaxation. In contrast to the diffusion of larger nanoparticles in high temperature rubbery networks, our analysis in the supercooled regime suggests that for the penetrants studied the mesh confinement effects are of secondary importance relative to the consequences of crosslink-induced slowing down of activated hopping of glassy physics origin.

1.
D.
Peer
,
J. M.
Karp
,
S.
Hong
,
O. C.
Farokhzad
,
R.
Margalit
, and
R.
Langer
,
Nat. Nanotechnol.
2
,
751
760
(
2007
).
2.
J.
Guan
,
B.
Wang
, and
S.
Granick
,
ACS Nano
8
,
3331
3336
(
2014
).
3.
K.
Paeng
,
H.
Park
,
D. T.
Hoang
, and
L. J.
Kaufman
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
4952
4957
(
2015
).
4.
Y.
Lu
,
A. A.
Aimetti
,
R.
Langer
, and
Z.
Gu
,
Nat. Rev. Mater.
2
,
16075
(
2016
).
5.
T.
Sentjabrskaja
,
E.
Zaccarelli
,
C.
De Michele
,
F.
Sciortino
,
P.
Tartaglia
,
T.
Voigtmann
,
S. U.
Egelhaaf
, and
M.
Laurati
,
Nat. Commun.
7
,
11133
(
2016
).
6.
R.
Poling-Skutvik
,
R. C.
Roberts
,
A. H.
Slim
,
S.
Narayanan
,
R.
Krishnamoorti
,
J. C.
Palmer
, and
J. C.
Conrad
,
J. Phys. Chem. Lett.
10
,
1784
1789
(
2019
).
7.
M.
Kanduč
,
W. K.
Kim
,
R.
Roa
, and
J.
Dzubiella
,
ACS Nano
15
,
614
624
(
2020
).
8.
C.
Xue
,
X.
Shi
,
Y.
Tian
,
X.
Zheng
, and
G.
Hu
,
Nano Lett.
20
,
3895
3904
(
2020
).
9.
G. S.
Sheridan
and
C. M.
Evans
,
Macromolecules
54
,
11198
11208
(
2021
).
10.
D. F.
Sanders
,
Z. P.
Smith
,
R.
Guo
,
L. M.
Robeson
,
J. E.
McGrath
,
D. R.
Paul
, and
B. D.
Freeman
,
Polymer
54
,
4729
4761
(
2013
).
11.
J.
Li
and
D. J.
Mooney
,
Nat. Rev. Mater.
1
,
16071
(
2016
).
12.
J. S.
Vrentas
and
C. M.
Vrentas
,
Diffusion and Mass Transfer
(
CRC Press
,
Boca Raton
,
2016
).
13.
M.
Galizia
,
W. S.
Chi
,
Z. P.
Smith
,
T. C.
Merkel
,
R. W.
Baker
, and
B. D.
Freeman
,
Macromolecules
50
,
7809
7843
(
2017
).
14.
C. R.
Bilchak
,
M.
Jhalaria
,
Y.
Huang
,
Z.
Abbas
,
J.
Midya
,
F. M.
Benedetti
,
D.
Parisi
,
W.
Egger
,
M.
Dickmann
,
M.
Minelli
,
F.
Doghieri
,
A.
Nikoubashman
,
C. J.
Durning
,
D.
Vlassopoulos
,
J.
Jestin
,
Z. P.
Smith
,
B. C.
Benicewicz
,
M.
Rubinstein
,
L.
Leibler
, and
S. K.
Kumar
,
ACS Nano
14
,
17174
17183
(
2020
).
15.
P.
Bernardo
,
E.
Drioli
, and
G.
Golemme
,
Ind. Eng. Chem. Res.
48
,
4638
4663
(
2009
).
16.
G. M.
Geise
,
H.-S.
Lee
,
D. J.
Miller
,
B. D.
Freeman
,
J. E.
McGrath
, and
D. R.
Paul
,
J. Polym. Sci., Part B
48
,
1685
1718
(
2010
).
17.
D. S.
Sholl
and
R. P.
Lively
,
Nature
532
,
435
437
(
2016
).
18.
J. W.
Barnett
and
S. K.
Kumar
,
Soft Matter
15
,
424
432
(
2019
).
19.
S. R.
White
,
N. R.
Sottos
,
P. H.
Geubelle
,
J. S.
Moore
,
M. R.
Kessler
,
S. R.
Sriram
,
E. N.
Brown
, and
S.
Viswanathan
,
Nature
409
,
794
797
(
2001
).
20.
B. J.
Blaiszik
,
S. L. B.
Kramer
,
S. C.
Olugebefola
,
J. S.
Moore
,
N. R.
Sottos
, and
S. R.
White
,
Annu. Rev. Mater. Res.
40
,
179
211
(
2010
).
21.
J. F.
Patrick
,
M. J.
Robb
,
N. R.
Sottos
,
J. S.
Moore
, and
S. R.
White
,
Nature
540
,
363
370
(
2016
).
22.
B. D.
Paulsen
,
K.
Tybrandt
,
E.
Stavrinidou
, and
J.
Rivnay
,
Nat. Mater.
19
,
13
26
(
2020
).
23.
H.
Wang
,
J. K.
Keum
,
A.
Hiltner
,
E.
Baer
,
B.
Freeman
,
A.
Rozanski
, and
A.
Galeski
,
Science
323
,
757
760
(
2009
).
24.
C.
Wang
,
Q.
Ge
,
D.
Ting
,
D.
Nguyen
,
H.-R.
Shen
,
J.
Chen
,
H. N.
Eisen
,
J.
Heller
,
R.
Langer
, and
D.
Putnam
,
Nat. Mater.
3
,
190
196
(
2004
).
25.
D.
Li
,
X.
Zhang
,
J.
Yao
,
G. P.
Simon
, and
H.
Wang
,
Chem. Commun.
47
,
1710
1712
(
2011
).
26.
W.
Ali
,
B.
Gebert
,
T.
Hennecke
,
K.
Graf
,
M.
Ulbricht
, and
J. S.
Gutmann
,
ACS Appl. Mater. Interfaces
7
,
15696
15706
(
2015
).
27.
G. M.
Geise
,
D. R.
Paul
, and
B. D.
Freeman
,
Prog. Polym. Sci.
39
,
1
42
(
2014
).
28.
J. S.
Vrentas
and
J. L.
Duda
,
J. Polym. Sci., Part B
15
,
403
416
(
1977
).
29.
W. J.
Koros
and
R.
Mahajan
,
J. Membr. Sci.
175
,
181
196
(
2000
).
30.
N.
Ramesh
,
P. K.
Davis
,
J. M.
Zielinski
,
R. P.
Danner
, and
J. L.
Duda
,
J. Polym. Sci., Part B
49
,
1629
1644
(
2011
).
31.
K.
Zhang
and
S. K.
Kumar
,
ACS Macro Lett.
6
,
864
868
(
2017
).
32.
D.
Meng
,
K.
Zhang
, and
S. K.
Kumar
,
Soft Matter
14
,
4226
4230
(
2018
).
33.
K.
Zhang
,
D.
Meng
,
F.
Müller-Plathe
, and
S. K.
Kumar
,
Soft Matter
14
,
440
447
(
2018
).
34.
B.
Mei
and
K. S.
Schweizer
,
Macromolecules
55
,
9134
9151
(
2022
).
35.
B.
Mei
,
Y.
Zhou
, and
K. S.
Schweizer
,
J. Phys. Chem. B
124
,
6121
6131
(
2020
).
36.
S.
Mirigian
and
K. S.
Schweizer
,
J. Chem. Phys.
140
,
194506
(
2014
).
37.
Y.
Zhou
,
B.
Mei
, and
K. S.
Schweizer
,
J. Chem. Phys.
156
,
114901
(
2022
).
38.
B.
Mei
,
Y.
Zhou
, and
K. S.
Schweizer
,
Macromolecules
54
,
10086
10099
(
2021
).
39.
S. J.
Xie
and
K. S.
Schweizer
,
Macromolecules
49
,
9655
9664
(
2016
).
40.
S.
Mirigian
and
K. S.
Schweizer
,
Macromolecules
48
,
1901
1913
(
2015
).
41.
B.
Mei
,
T.-W.
Lin
,
G. S.
Sheridan
,
C. M.
Evans
,
C. E.
Sing
, and
K. S.
Schweizer
,
Macromolecules
55
,
4159
4173
(
2022
).
42.
B.
Mei
and
K. S.
Schweizer
,
Soft Matter
17
,
2624
2639
(
2021
).
43.
R.
Zhang
and
K. S.
Schweizer
,
J. Chem. Phys.
146
,
194906
(
2017
).
44.
B.
Mei
,
G. S.
Sheridan
,
C. M.
Evans
, and
K. S.
Schweizer
,
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2210094119
(
2022
).
45.
B.
Mei
and
K. S.
Schweizer
,
J. Chem. Phys.
155
,
054505
(
2021
).
46.
S.
Karmakar
,
C.
Dasgupta
, and
S.
Sastry
,
Annu. Rev. Condens. Matter Phys.
5
,
255
284
(
2014
).
47.
L.
Berthier
and
G.
Biroli
,
Rev. Mod. Phys.
83
,
587
645
(
2011
).
48.
B.
Mei
,
B.
Zhuang
,
Y.
Lu
,
L.
An
, and
Z.-G.
Wang
,
J. Phys. Chem. Lett.
13
,
3957
3964
(
2022
).
49.
C. K.
Mishra
and
R.
Ganapathy
,
Phys. Rev. Lett.
114
,
198302
(
2015
).
50.
H. B.
Yu
,
K.
Samwer
,
Y.
Wu
, and
W. H.
Wang
,
Phys. Rev. Lett.
109
,
095508
(
2012
).
51.
L.
Xu
,
F.
Mallamace
,
Z.
Yan
,
F. W.
Starr
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Nat. Phys.
5
,
565
569
(
2009
).
52.
S. K.
Kumar
,
G.
Szamel
, and
J. F.
Douglas
,
J. Chem. Phys.
124
,
214501
(
2006
).
53.
D. N.
Perera
and
P.
Harrowell
,
Phys. Rev. Lett.
81
,
120
(
1998
).
54.
B.
Mei
,
Y.
Lu
,
L.
An
, and
Z.-G.
Wang
,
Phys. Rev. E
100
,
052607
(
2019
).
55.
L.-H.
Cai
,
S.
Panyukov
, and
M.
Rubinstein
,
Macromolecules
48
,
847
862
(
2015
).
56.
Z.
Xu
,
X.
Dai
,
X.
Bu
,
Y.
Yang
,
X.
Zhang
,
X.
Man
,
X.
Zhang
,
M.
Doi
, and
L.-T.
Yan
,
ACS Nano
15
,
4608
4616
(
2021
).
57.
V.
Sorichetti
,
V.
Hugouvieux
, and
W.
Kob
,
Macromolecules
54
,
8575
8589
(
2021
).
58.
T.-W.
Lin
,
B.
Mei
,
K. S.
Schweizer
, and
C. E.
Sing
, “
Simulation study of the effects of polymer network dynamics and mesh confinement on the diffusion and structural relaxation of penetrants
,”
J. Chem. Phys.
, arXiv:2301.05356 (submitted) (
2023
).
59.
D.
Ben‐Amotz
and
J.
Drake
,
J. Chem. Phys.
89
,
1019
1029
(
1988
).
60.
K. S.
Schweizer
and
E. J.
Saltzman
,
J. Chem. Phys.
119
,
1181
1196
(
2003
).
61.
A.
Ghosh
and
K. S.
Schweizer
,
Macromolecules
53
,
4366
4380
(
2020
).
62.
K. G.
Honnell
,
J. G.
Curro
, and
K. S.
Schweizer
,
Macromolecules
23
,
3496
3505
(
1990
).
63.
R.
Koyama
,
J. Phys. Soc. Jpn.
34
,
1029
1038
(
1973
).
64.
X.
Zheng
,
Y.
Guo
,
J. F.
Douglas
, and
W.
Xia
,
J. Chem. Phys.
157
,
064901
(
2022
).
65.
A. D.
Phan
and
K. S.
Schweizer
,
J. Chem. Phys.
148
,
054502
(
2018
).
66.
S.
Milster
,
W. K.
Kim
,
M.
Kanduč
, and
J.
Dzubiella
,
J. Chem. Phys.
154
,
154902
(
2021
).
67.
A.
Ghosh
,
S.
Samanta
,
S.
Ge
,
A. P.
Sokolov
, and
K. S.
Schweizer
,
Macromolecules
55
,
2345
2357
(
2022
).
68.
D. C.
Viehman
and
K. S.
Schweizer
,
J. Chem. Phys.
128
,
084509
(
2008
).
69.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
341
(
1990
).
71.
B.
Mei
,
T.-W.
Lin
,
G. S.
Sheridan
,
C. M.
Evans
,
C. E.
Sing
, and
K. S.
Schweizer
,
ACS Cent. Sci.
9
,
508
518
(
2023
).
72.
D.
Walsh
and
P.
Zoller
,
Standard Pressure Volume Temperature Data for Polymers
(
CRC Press
,
1995
).
73.
B.
Mei
,
Y.
Zhou
, and
K. S.
Schweizer
,
J. Phys. Chem. B
125
,
12353
12364
(
2021
).
74.
B.
Mei
,
Y.
Zhou
, and
K. S.
Schweizer
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2025341118
(
2021
).
75.
S.-J.
Xie
and
K. S.
Schweizer
,
Macromolecules
53
,
5350
5360
(
2020
).
76.
S.-J.
Xie
and
K. S.
Schweizer
,
J. Chem. Phys.
152
,
034502
(
2020
).
77.
L.
Rovigatti
,
G.
Nava
,
T.
Bellini
, and
F.
Sciortino
,
Macromolecules
51
,
1232
1241
(
2018
).
78.
A.
Perego
and
F.
Khabaz
,
Macromolecules
53
,
8406
8416
(
2020
).
79.
A.
Perego
,
D.
Lazarenko
,
M.
Cloitre
, and
F.
Khabaz
,
Macromolecules
55
,
7605
7613
(
2022
).
80.
L.
Porath
,
B.
Soman
,
B. B.
Jing
, and
C. M.
Evans
,
ACS Macro Lett.
11
,
475
483
(
2022
).
You do not currently have access to this content.