In this paper, the solubility of carbon dioxide (CO2) in water along the isobar of 400 bar is determined by computer simulations using the well-known TIP4P/Ice force field for water and the TraPPE model for CO2. In particular, the solubility of CO2 in water when in contact with the CO2 liquid phase and the solubility of CO2 in water when in contact with the hydrate have been determined. The solubility of CO2 in a liquid–liquid system decreases as the temperature increases. The solubility of CO2 in a hydrate–liquid system increases with temperature. The two curves intersect at a certain temperature that determines the dissociation temperature of the hydrate at 400 bar (T3). We compare the predictions with T3 obtained using the direct coexistence technique in a previous work. The results of both methods agree, and we suggest 290(2) K as the value of T3 for this system using the same cutoff distance for dispersive interactions. We also propose a novel and alternative route to evaluate the change in chemical potential for the formation of hydrates along the isobar. The new approach is based on the use of the solubility curve of CO2 when the aqueous solution is in contact with the hydrate phase. It considers rigorously the non-ideality of the aqueous solution of CO2, providing reliable values for the driving force for nucleation of hydrates in good agreement with other thermodynamic routes used. It is shown that the driving force for hydrate nucleation at 400 bar is larger for the methane hydrate than for the carbon dioxide hydrate when compared at the same supercooling. We have also analyzed and discussed the effect of the cutoff distance of dispersive interactions and the occupancy of CO2 on the driving force for nucleation of the hydrate.

1.
D.
Eisenberg
and
W.
Kauzmann
,
The Structure and Properties of Water
(
Oxford University Press
,
1969
).
2.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
1999
).
3.
E.
Sanz
,
C.
Vega
,
J. L. F.
Abascal
, and
L. G.
MacDowell
, “
Phase diagram of water from computer simulation
,”
Phys. Rev. Lett.
92
,
255701
(
2004
).
4.
E. D.
Sloan
and
C.
Koh
,
Clathrate Hydrates of Natural Gases
,
3rd ed.
(
CRC Press
,
New York
,
2008
).
5.
K. A.
Kvenvolden
, “
Methane hydrate—A major reservoir of carbon in the shallow geosphere?
,”
Chem. Geol.
71
,
41
51
(
1988
).
6.
C. A.
Koh
,
A. K.
Sum
, and
E. D.
Sloan
, “
State of the art: Natural gas hydrates as a natural resource
,”
J. Nat. Gas Sci. Eng.
8
,
132
138
(
2012
).
7.
M.
Yang
,
Y.
Song
,
L.
Jiang
,
Y.
Zhao
,
X.
Ruan
,
Y.
Zhang
, and
S.
Wang
, “
Hydrate-based technology for CO2 capture from fossil fuel power plants
,”
Appl. Energy
116
,
26
40
(
2014
).
8.
M.
Ricaurte
,
C.
Dicharry
,
X.
Renaud
, and
J.-P.
Torré
, “
Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation
,”
Fuel
122
,
206
217
(
2014
).
9.
B.
Kvamme
,
A.
Graue
,
T.
Buanes
,
T.
Kuznetsova
, and
G.
Ersland
, “
Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers
,”
Int. J. Greenhouse Gas Control
1
,
236
246
(
2007
).
10.
D. M.
D’Alessandro
,
B.
Smit
, and
J. R.
Long
, “
Carbon dioxide capture: Prospects for new materials
,”
Angew. Chem., Int. Ed.
49
,
6058
6082
(
2010
).
11.
S.
Choi
,
J. H.
Drese
, and
C. W.
Jones
, “
Adsorbent materials for carbon dioxide capture from large anthropogenic point sources
,”
ChemSusChem
2
,
796
854
(
2009
).
12.
J. C.
Platteeuw
and
J. H.
van der Waals
, “
Thermodynamic properties of gas hydrates
,”
Mol. Phys.
1
,
91
96
(
1957
).
13.
J. C.
Platteeuw
and
J. H.
van der Waals
, “
Thermodynamic properties of gas hydrates II: Phase equilibria in the system H2S-C3H3-H2O at −3 °C
,”
Rec. Trav. Chim. Pays Bas
78
,
126
133
(
1959
).
14.
C. A.
Koh
, “
Towards a fundamental understanding of natural gas hydrates
,”
Chem. Soc. Rev.
31
,
157
167
(
2002
).
15.
I. N.
Tsimpanogiannis
and
I. G.
Economou
, “
Monte Carlo simulation studies of clathrate hydrates: A review
,”
J. Supercrit. Fluids
134
,
51
60
(
2018
).
16.
V. K.
Michalis
,
J.
Costandy
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology
,”
J. Chem. Phys.
142
,
044501
(
2015
).
17.
J.
Costandy
,
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates
,”
J. Chem. Phys.
143
,
094506
(
2015
).
18.
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system
,”
Phys. Chem. Chem. Phys.
18
,
23538
23548
(
2016
).
19.
M. H.
Waage
,
T. J. H.
Vlugt
, and
S.
Kjelstrup
, “
Phase diagram of methane and carbon dioxide hydrates computed by Monte Carlo simulations
,”
J. Phys. Chem. B
121
,
7336
7350
(
2017
).
20.
M. M.
Conde
and
C.
Vega
, “
Determining the three-phase coexistence line in methane hydrates using computer simulations
,”
J. Chem. Phys.
133
,
064507
(
2010
).
21.
M. M.
Conde
and
C.
Vega
, “
Note: A simple correlation to locate the three phase coexistence line in methane-hydrate simulations
,”
J. Chem. Phys.
138
,
056101
(
2013
).
22.
J. M.
Míguez
,
M. M.
Conde
,
J.-P.
Torré
,
F. J.
Blas
,
M. M.
Piñeiro
, and
C.
Vega
, “
Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line
,”
J. Chem. Phys.
142
,
124505
(
2015
).
23.
M.
Pérez-Rodríguez
,
A.
Vidal-Vidal
,
J. M.
Míguez
,
F. J.
Blas
,
J.-P.
Torré
, and
M. M.
Piñeiro
, “
Computational study of the interplay between intermolecular interactions and CO2 orientations in type I hydrates
,”
Phys. Chem. Chem. Phys.
19
,
3384
3393
(
2017
).
24.
A. M.
Fernández-Fernández
,
M.
Pérez-Rodríguez
,
A.
Comesaña
, and
M. M.
Piñeiro
, “
Three-phase equilibrium curve shift for methane hydrate in oceanic conditions calculated from molecular dynamics simulations
,”
J. Mol. Liq.
274
,
426
433
(
2019
).
25.
P.
Thoutam
,
S.
Rezaei Gomari
,
F.
Ahmad
, and
M.
Islam
, “
Comparative analysis of hydrate nucleation for methane and carbon dioxide
,”
Molecules
24
,
1055
(
2021
).
26.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
Seeding approach to crystal nucleation
,”
J. Chem. Phys.
144
,
034501
(
2016
).
27.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
1997
).
28.
G. D.
Soria
,
J. R.
Espinosa
,
J.
Ramirez
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
A simulation study of homogeneous ice nucleation in supercooled salty water
,”
J. Chem. Phys.
148
,
222811
(
2018
).
29.
J.
Grabowska
,
S.
Blázquez
,
E.
Sanz
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Solubility of methane in water: Some useful results for hydrate nucleation
,”
J. Phys. Chem. B
126
,
8553
8570
(
2022
).
30.
J.
Grabowska
,
S.
Blázquez
,
E.
Sanz
,
E. G.
Noya
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations
,”
J. Chem. Phys.
158
,
114505
(
2023
).
31.
B. C.
Knott
,
V.
Molinero
,
M. F.
Doherty
, and
B.
Peters
, “
Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions
,”
J. Am. Chem. Soc.
134
,
19544
19547
(
2012
).
32.
V.
Molinero
and
E. B.
Moore
, “
Water modeled as an intermediate element between carbon and silicon
,”
J. Phys. Chem. B
113
,
4008
4016
(
2009
).
33.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Amorphous precursors in the nucleation of clathrate hydrates
,”
J. Am. Chem. Soc.
132
,
11806
11811
(
2010
).
34.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Nucleation pathways of clathrate hydrates: Effect of guest size and solubility
,”
J. Phys. Chem. B
114
,
13796
13807
(
2010
).
35.
L. C.
Jacobson
and
V.
Molinero
, “
Can amorphous nuclei grow crystalline clathrates? The size and crystallinity of critical clathrate nuclei
,”
J. Am. Chem. Soc.
133
,
6458
6463
(
2011
).
36.
S.
Sarupria
and
P. G.
Debenedetti
, “
Molecular dynamics study of carbon dioxide hydrate dissociation
,”
J. Phys. Chem. Lett.
3
,
2942
2947
(
2012
).
37.
S.
Sarupria
and
P. G.
Debenedetti
, “
Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations
,”
J. Phys. Chem. A
115
,
6102
6111
(
2011
).
38.
D.
Yuhara
,
B. C.
Barnes
,
D.
Suh
,
B. C.
knott
,
G. T.
Beckham
,
K.
Yasuoka
,
D. T.
Wu
, and
A. K.
Sum
, “
Nucleation rate analysis of methane hydrate from molecular dynamics simulations
,”
Faraday Discuss.
179
,
463
474
(
2015
).
39.
S.
Liang
and
P. G.
Kusalik
, “
Nucleation of gas hydrates within constant energy systems
,”
J. Phys. Chem. B
117
,
1403
(
2013
).
40.
B. C.
Barnes
,
B. C.
Knott
,
G. T.
Beckham
,
D. T.
Wu
, and
A. K.
Sum
, “
Molecular dynamics study of carbon dioxide hydrate dissociation
,”
J. Phys. Chem. B
118
,
13236
13243
(
2014
).
41.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size
,”
J. Phys. Chem. C
115
,
21241
(
2011
).
42.
P.
Warrier
,
M. N.
Khan
,
V.
Srivastava
,
C. M.
Maupin
, and
C. A.
Koh
, “
Overview: Nucleation of clathrate hydrates
,”
J. Chem. Phys.
145
,
211705
(
2016
).
43.
Z.
Zhang
,
C.-J.
Liu
,
M. R.
Walsh
, and
G.-J.
Guo
, “
Effects of ensembles on methane hydrate nucleation kinetics
,”
Phys. Chem. Chem. Phys.
18
,
15602
(
2016
).
44.
M.
Lauricella
,
G.
Ciccotti
,
N. J.
English
,
B.
Peters
, and
S.
Meloni
, “
Mechanisms and nucleation rate of methane hydrate by dynamical nonequilibrium molecular dynamics
,”
J. Phys. Chem. C
121
,
24223
(
2016
).
45.
Arjun
,
T. A.
Berendsen
, and
P. G.
Bolhuis
, “
Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
19305
(
2019
).
46.
T.
Karmakar
,
P. M.
Piaggi
, and
M.
Parrinello
, “
Molecular dynamics simulations of crystal nucleation from solution at constant chemical potential
,”
J. Chem. Theory Comput.
15
,
6923
(
2019
).
47.
A.
Arjun
and
P. G.
Bolhuis
, “
Rate prediction for homogeneous nucleation of methane hydrate at moderate supersaturation using transition interface sampling
,”
J. Phys. Chem. B
124
,
8099
(
2020
).
48.
A.
Arjun
and
P. G.
Bolhuis
, “
Homogenous nucleation rate of CO2 hydrates using transition interface sampling
,”
J. Chem. Phys.
154
,
164507
(
2021
).
49.
G.-J.
Guo
and
Z.
Zhang
, “
Open questions on methane hydrate nucleation
,”
Commun. Chem.
4
,
102
(
2021
).
50.
B.
Kvamme
,
S. A.
Aromada
,
N.
Saeidi
,
T.
Hustache-Marmou
, and
P.
Gjerstad
, “
Hydrate nucleation, growth, and induction
,”
ACS Omega
5
,
2603
(
2020
).
51.
M. C.
dos Ramos
,
F. J.
Blas
, and
A.
Galindo
, “
Phase equilibria, excess properties, and Henry's constants of the water + carbon dioxide binary mixture
,”
J. Chem. Phys.
111
,
015924
15934
(
2007
).
52.
D.
Kashchiev
,
Nucleation
(
Butterworth-Heinemann
,
Oxford, UK
,
2000
).
53.
D.
Kashchiev
and
A.
Firoozabadi
, “
Driving force for crystallization of gas hydrates
,”
J. Cryst. Growth
241
,
220
230
(
2002
).
54.
D.
Kashchiev
and
A.
Firoozabadi
, “
Nucleation of gas hydrates
,”
J. Cryst. Growth
243
,
476
489
(
2002
).
55.
D.
Kashchiev
and
G. M.
van Rosmalen
, “
Review: Nucleation in solutions revisited
,”
Cryst. Res. Technol.
38
,
555
574
(
2003
).
56.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
57.
L. J.
Chen
, “
Area dependence of the surface tension of a Lennard-Jones fluid from molecular dynamics simulations
,”
J. Chem. Phys.
103
,
10214
(
1995
).
58.
M.
González-Melchor
,
P.
Orea
,
J.
López-Lemus
,
F.
Bresme
, and
J.
Alejandre
, “
Stress anisotropy induced by periodic boundary conditions
,”
J. Chem. Phys.
122
,
094503
(
2005
).
59.
J.
Janeček
, “
Effect of the interfacial area on the equilibrium properties of Lennard-Jones fluid
,”
J. Chem. Phys.
131
,
124513
(
2009
).
60.
M. A.
Cuendet
and
W. F.
van Gunsteren
, “
On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm
,”
J. Chem. Phys.
127
,
184102
(
2007
).
61.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
62.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
63.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
64.
J. L.
Abascal
,
E.
Sanz
,
R. G.
Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
65.
J. J.
Potoff
and
J. I.
Siepmann
, “
Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
,”
AIChE J.
47
,
1676
1682
(
2001
).
66.
J.
Algaba
,
E.
Acuña
,
J. M.
Míguez
,
B.
Mendiboure
,
I. M.
Zerón
, and
F. J.
Blas
, “
Simulation of the carbon dioxide hydrate-water interfacial energy
,”
J. Colloid Interface Sci.
623
,
354
367
(
2022
).
67.
I. M.
Zerón
,
J. M.
Míguez
,
B.
Mendiboure
,
J.
Algaba
, and
F. J.
Blas
, “
Simulation of the CO2 hydrate–water interfacial energy: The mold integration–guest methodology
,”
J. Chem. Phys.
157
,
134709
(
2022
).
68.
J. M.
Míguez
,
J. M.
Garrido
,
F. J.
Blas
,
H.
Segura
,
A.
Mejía
, and
M. M.
Piñeiro
, “
Comprehensive characterization of interfacial behavior for the mixture CO2 + H2O + CH4: Comparison between atomistic and coarse grained molecular simulation models and density gradient theory
,”
J. Phys. Chem. C
118
,
24504
24519
(
2014
).
69.
A.
Trokhymchuk
and
J.
Alejandre
, “
Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers
,”
J. Chem. Phys.
111
,
8510
8523
(
1999
).
70.
J. M.
Míguez
,
M. M.
Piñeiro
, and
F. J.
Blas
, “
Influence of the long-range corrections on the interfacial properties of molecular models using Monte Carlo simulation
,”
J. Chem. Phys.
138
,
034707
(
2013
).
71.
F. J.
Martínez-Ruiz
,
F. J.
Blas
,
B.
Mendiboure
, and
A. I.
Moreno-Ventas Bravo
, “
Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited
,”
J. Chem. Phys.
141
,
184701
(
2014
).
72.
H.
Hulshof
, “
Ueber die oberflachenspannung
,”
Ann. Phys.
309
,
165
186
(
1901
).
73.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Clarendon Press
,
1982
).
74.
E.
De Miguel
,
F. J.
Blas
, and
E. M.
Del Río
, “
Molecular simulation of model liquid crystals in a strong aligning field
,”
Mol. Phys.
104
,
2919
2927
(
2006
).
75.
E.
de Miguel
and
G.
Jackson
, “
The nature of the calculation of the pressure in molecular simulations of continuous models from volume perturbations
,”
J. Chem. Phys.
125
,
164109
(
2006
).
76.
P.
Chiquet
,
J.-L.
Daridon
,
D.
Broseta
, and
S.
Thibeau
, “
CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage
,”
Energy Convers. Manag.
48
,
736
744
(
2007
).
77.
J.
Janeček
, “
Long range corrections in inhomogeneous simulations
,”
J. Phys. Chem. B
110
,
6264
6269
(
2006
).
78.
V. K.
Shen
,
R. D.
Mountain
, and
J. R.
Errington
, “
Comparative study of the effect of tail corrections on surface tension determined by molecular simulation
,”
J. Phys. Chem. B
111
,
6198
6207
(
2007
).
79.
F. J.
Blas
,
L. G.
MacDowell
,
E.
de Miguel
, and
G.
Jackson
, “
Vapor-liquid interfacial properties of fully flexible Lennard-Jones chains
,”
J. Chem. Phys.
129
,
144703
(
2008
).
80.
L. G.
MacDowell
and
F. J.
Blas
, “
Surface tension of fully flexible Lennard-Jones chains: Role of long-range corrections
,”
J. Chem. Phys.
131
,
074705
(
2009
).
81.
R. W.
Henning
,
A. J.
Schultz
,
V.
Thieu
, and
Y.
Halpern
, “
Neutron diffraction studies of CO2 clathrate hydrate: Formation from deuterated ice
,”
J. Phys. Chem. A
104
,
5066
(
2000
).
82.
K. A.
Udachin
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements
,”
J. Phys. Chem. B
105
,
4200
(
2001
).
83.
T.
Ikeda
,
O.
Yamamuro
,
T.
Matsuo
,
K.
Mori
,
S.
Torii
,
T.
Kamiyama
,
F.
Izumi
,
S.
Ikeda
, and
S.
Mae
, “
Neutron diffraction study of carbon dioxide clathrate hydrate
,”
J. Phys. Chem. Solids
60
,
1527
(
1999
).
84.
J. A.
Ripmeester
and
C. I.
Ratcliffe
, “
The diverse nature of dodecahedral cages in clathrate hydrates as revealed by 129Xe and 13C NMR spectroscopy: CO2 as a small-cage guest
,”
Energy Fuels
12
,
197
(
1998
).
85.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique
,”
J. Chem. Phys.
147
,
244506
(
2017
).
86.
I. N.
Levine
,
Physical Chemistry
(
McGraw-Hill
,
New York
,
2009
).
You do not currently have access to this content.