Externally applied electric fields in liquid water can induce a plethora of effects with wide implications in electrochemistry and hydrogen-based technologies. Although some effort has been made to elucidate the thermodynamics associated with the application of electric fields in aqueous systems, to the best of our knowledge, field-induced effects on the total and local entropy of bulk water have never been presented so far. Here, we report on classical TIP4P/2005 and ab initio molecular dynamics simulations measuring entropic contributions carried by diverse field intensities in liquid water at room temperature. We find that strong fields are capable of aligning large fractions of molecular dipoles. Nevertheless, the order-maker action of the field leads to quite modest entropy reductions in classical simulations. Albeit more significant variations are recorded during first-principles simulations, the associated entropy modifications are small compared to the entropy change involved in the freezing phenomenon, even at intense fields slightly beneath the molecular dissociation threshold. This finding further corroborates the idea that electrofreezing (i.e., the electric-field-induced crystallization) cannot take place in bulk water at room temperature. In addition, here, we propose a molecular-dynamics-based analysis (3D-2PT) that spatially resolves the local entropy and the number density of bulk water under an electric field, which enables us to map their field-induced changes in the environment of reference H2O molecules. By returning detailed spatial maps of the local order, the proposed approach is capable of establishing a link between entropic and structural modifications with atomistic resolution.

1.
S. D.
Fried
and
S. G.
Boxer
, “
Measuring electric fields and noncovalent interactions using the vibrational Stark effect
,”
Acc. Chem. Res.
48
,
998
1006
(
2015
).
2.
M.
Gavish
,
J.
Wang
,
M. L.
Eisenstein
,
M.
Lahav
, and
L.
Leiserowitz
, “
The role of crystal polarity in α-amino acid crystals for induced nucleation of ice
,”
Science
256
,
815
818
(
1992
).
3.
E.-M.
Choi
,
Y.-H.
Yoon
,
S.
Lee
, and
H.
Kang
, “
Freezing transition of interfacial water at room temperature under electric fields
,”
Phys. Rev. Lett.
95
,
085701
(
2005
).
4.
I.
Braslavsky
and
S. G.
Lipson
, “
Electrofreezing effect and nucleation of ice crystals in free growth experiments
,”
Appl. Phys. Lett.
72
,
264
266
(
1998
).
5.
W.
Zhu
,
Y.
Huang
,
C.
Zhu
,
H.-H.
Wu
,
L.
Wang
,
J.
Bai
,
J.
Yang
,
J. S.
Francisco
,
J.
Zhao
,
L.-F.
Yuan
, and
X. C.
Zeng
, “
Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram
,”
Nat. Commun.
10
,
1925
(
2019
).
6.
N.
Balke
,
S.
Jesse
,
B.
Carmichael
,
M. B.
Okatan
,
I. I.
Kravchenko
,
S. V.
Kalinin
, and
A.
Tselev
, “
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
,”
Nanotechnology
28
,
065704
(
2017
).
7.
Z.
Hammadi
,
M.
Descoins
,
E.
Salançon
, and
R.
Morin
, “
Proton and light ion nanobeams from field ionization of water
,”
Appl. Phys. Lett.
101
,
243110
(
2012
).
8.
E. M.
Stuve
, “
Ionization of water in interfacial electric fields: An electrochemical view
,”
Chem. Phys. Lett.
519–520
,
1
17
(
2012
).
9.
S.
Shaik
,
D.
Mandal
, and
R.
Ramanan
, “
Oriented electric fields as future smart reagents in chemistry
,”
Nat. Chem.
8
,
1091
1098
(
2016
).
10.
A. C.
Aragonès
,
N. L.
Haworth
,
N.
Darwish
,
S.
Ciampi
,
N. J.
Bloomfield
,
G. G.
Wallace
,
I.
Diez-Perez
, and
M. L.
Coote
, “
Electrostatic catalysis of a Diels–Alder reaction
,”
Nature
531
,
88
91
(
2016
).
11.
X.
Huang
,
C.
Tang
,
J.
Li
,
L.-C.
Chen
,
J.
Zheng
,
P.
Zhang
,
J.
Le
,
R.
Li
,
X.
Li
,
J.
Liu
,
Y.
Yang
,
J.
Shi
,
Z.
Chen
,
M.
Bai
,
H.-L.
Zhang
,
H.
Xia
,
J.
Cheng
,
Z.-Q.
Tian
, and
W.
Hong
, “
Electric field–induced selective catalysis of single-molecule reaction
,”
Sci. Adv.
5
,
eaaw3072
(
2019
).
12.
S.
Shaik
,
S. P.
de Visser
, and
D.
Kumar
, “
External electric field will control the selectivity of enzymatic-like bond activations
,”
J. Am. Chem. Soc.
126
,
11746
11749
(
2004
).
13.
R.
Meir
,
H.
Chen
,
W.
Lai
, and
S.
Shaik
, “
Oriented electric fields accelerate Diels–Alder reactions and control the endo/exo selectivity
,”
ChemPhysChem
11
,
301
310
(
2010
).
14.
G.
Cassone
,
F.
Pietrucci
,
F.
Saija
,
F.
Guyot
, and
A. M.
Saitta
, “
One-step electric-field driven methane and formaldehyde synthesis from liquid methanol
,”
Chem. Sci.
8
,
2329
2336
(
2017
).
15.
C. A.
Petroff
,
G.
Cassone
,
J.
Šponer
, and
G. R.
Hutchison
, “
Intrinsically polar piezoelectric self-assembled oligopeptide monolayers
,”
Adv. Mater.
33
,
2007486
(
2021
).
16.
A. M.
Saitta
and
F.
Saija
, “
Miller experiments in atomistic computer simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
13768
13773
(
2014
).
17.
G.
Cassone
,
J.
Sponer
,
J. E.
Sponer
,
F.
Pietrucci
,
A. M.
Saitta
, and
F.
Saija
, “
Synthesis of (d)-erythrose from glycolaldehyde aqueous solutions under electric field
,”
Chem. Commun.
54
,
3211
3214
(
2018
).
18.
K.
Dutta Dubey
,
T.
Stuyver
,
S.
Kalita
, and
S.
Shaik
, “
Solvent organization and rate regulation of a Menshutkin reaction by oriented external electric fields are revealed by combined md and QM/MM calculations
,”
J. Am. Chem. Soc.
142
,
9955
9965
(
2020
).
19.
M.
Saggu
,
N. M.
Levinson
, and
S. G.
Boxer
, “
Experimental quantification of electrostatics in X–H⋯π hydrogen bonds
,”
J. Am. Chem. Soc.
134
,
18986
18997
(
2012
).
20.
D.
Laage
,
T.
Elsaesser
, and
J. T.
Hynes
, “
Perspective: Structure and ultrafast dynamics of biomolecular hydration shells
,”
Struct. Dyn.
4
,
044018
(
2017
).
21.
A.
Kundu
,
F.
Dahms
,
B. P.
Fingerhut
,
E. T. J.
Nibbering
,
E.
Pines
, and
T.
Elsaesser
, “
Hydrated excess protons in acetonitrile/water mixtures: Solvation species and ultrafast proton motions
,”
J. Phys. Chem. Lett.
10
,
2287
2294
(
2019
).
22.
A. M.
Saitta
,
F.
Saija
, and
P. V.
Giaquinta
, “
Ab initio molecular dynamics study of dissociation of water under an electric field
,”
Phys. Rev. Lett.
108
,
207801
(
2012
).
23.
G.
Cassone
,
J.
Sponer
,
S.
Trusso
, and
F.
Saija
, “
Ab initio spectroscopy of water under electric fields
,”
Phys. Chem. Chem. Phys.
21
,
21205
21212
(
2019
).
24.
Z.
Futera
and
N. J.
English
, “
Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics
,”
J. Chem. Phys.
147
,
031102
(
2017
).
25.
G.
Cassone
, “
Nuclear quantum effects largely influence molecular dissociation and proton transfer in liquid water under an electric field
,”
J. Phys. Chem. Lett.
11
,
8983
8988
(
2020
).
26.
A.
Chattopadhyay
and
S. G.
Boxer
, “
Vibrational Stark effect spectroscopy
,”
J. Am. Chem. Soc.
117
,
1449
1450
(
1995
).
27.
S.
Laporte
,
F.
Finocchi
,
L.
Paulatto
,
M.
Blanchard
,
E.
Balan
,
F.
Guyot
, and
A. M.
Saitta
, “
Strong electric fields at a prototypical oxide/water interface probed by ab initio molecular dynamics: MgO(001)
,”
Phys. Chem. Chem. Phys.
17
,
20382
20390
(
2015
).
28.
Z.
Futera
and
N. J.
English
, “
Water breakup at Fe2O3–hematite/water interfaces: Influence of external electric fields from nonequilibrium ab initio molecular dynamics
,”
J. Phys. Chem. Lett.
12
,
6818
6826
(
2021
).
29.
F.
Creazzo
and
S.
Luber
, “
Explicit solvent effects on (110) ruthenium oxide surface wettability: Structural, electronic and mechanical properties of rutile RuO2 by means of spin-polarized DFT-MD
,”
Appl. Surf. Sci.
570
,
150993
(
2021
).
30.
G.
Cassone
,
J.
Sponer
,
J. E.
Sponer
, and
F.
Saija
, “
Electrofreezing of liquid ammonia
,”
J. Phys. Chem. Lett.
13
,
9889
9894
(
2022
).
31.
S.
Laporte
,
F.
Pietrucci
,
F.
Guyot
, and
A. M.
Saitta
, “
Formic acid synthesis in a water–mineral system: Major role of the interface
,”
J. Phys. Chem. C
124
,
5125
5131
(
2020
).
32.
S.
Hejazi
,
H.
Pahlavanzadeh
, and
J. A. W.
Elliott
, “
Thermodynamic investigation of the effect of electric field on solid–liquid equilibrium
,”
J. Phys. Chem. B
125
,
1271
1281
(
2021
).
33.
A.
Estejab
,
R. A.
García Cárcamo
, and
R. B.
Getman
, “
Influence of an electrified interface on the entropy and energy of solvation of methanol oxidation intermediates on platinum (111) under explicit solvation
,”
Phys. Chem. Chem. Phys.
24
,
4251
4261
(
2022
).
34.
A.
Godec
and
F.
Merzel
, “
Physical origin underlying the entropy loss upon hydrophobic hydration
,”
J. Am. Chem. Soc.
134
,
17574
17581
(
2012
).
35.
D.
Chandler
, “
Interfaces and the driving force of hydrophobic assembly
,”
Nature
437
,
640
647
(
2005
).
36.
S.
Garde
and
A. J.
Patel
, “
Unraveling the hydrophobic effect, one molecule at a time
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
16491
16492
(
2011
).
37.
R. A. X.
Persson
,
V.
Pattni
,
A.
Singh
,
S. M.
Kast
, and
M.
Heyden
, “
Signatures of solvation thermodynamics in spectra of intermolecular vibrations
,”
J. Chem. Theory Comput.
13
,
4467
4481
(
2017
).
38.
M.
Heyden
, “
3d-2pt
” (
2022
).
39.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
40.
R. D.
King-Smith
and
D.
Vanderbilt
, “
Theory of polarization of crystalline solids
,”
Phys. Rev. B
47
,
1651
1654
(
1993
).
41.
R.
Resta
, “
Macroscopic polarization in crystalline dielectrics: The geometric phase approach
,”
Rev. Mod. Phys.
66
,
899
915
(
1994
).
42.
M. V.
Berry
, “
Quantal phase factors accompanying adiabatic changes
,”
Proc. R. Soc. London, Ser. A
392
,
45
57
(
1984
).
43.
P.
Umari
and
A.
Pasquarello
, “
Ab initio molecular dynamics in a finite homogeneous electric field
,”
Phys. Rev. Lett.
89
,
157602
(
2002
).
44.
R.
Resta
, “
Quantum-mechanical position operator in extended systems
,”
Phys. Rev. Lett.
80
,
1800
1803
(
1998
).
45.
W.-K.
Lee
,
S.
Tsoi
,
K. E.
Whitener
,
R.
Stine
,
J. T.
Robinson
,
J. S.
Tobin
,
A.
Weerasinghe
,
P. E.
Sheehan
, and
S. F.
Lyuksyutov
, “
Robust reduction of graphene fluoride using an electrostatically biased scanning probe
,”
Nano Res.
6
,
767
774
(
2013
).
46.
M.
Krack
, “
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
,”
Theor. Chem. Acc.
114
,
145
152
(
2005
).
47.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
48.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
49.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
50.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
51.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
52.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
53.
H.
Peng
,
Z.-H.
Yang
,
J. P.
Perdew
, and
J.
Sun
, “
Versatile van der Waals density functional based on a meta-generalized gradient approximation
,”
Phys. Rev. X
6
,
041005
(
2016
).
54.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
55.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
56.
J. L.
Aragones
,
L. G.
MacDowell
,
J. I.
Siepmann
, and
C.
Vega
, “
Phase diagram of water under an applied electric field
,”
Phys. Rev. Lett.
107
,
155702
(
2011
).
57.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
58.
S.
Miyamoto
and
P. A.
Kollman
, “
Settle: An analytical version of the shake and rattle algorithm for rigid water models
,”
J. Comput. Chem.
13
,
952
962
(
1992
).
59.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
60.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
61.
M.
Parrinello
and
A.
Rahman
, “
Study of an F center in molten KCl
,”
J. Chem. Phys.
80
,
860
867
(
1984
).
62.
T. N.
Fajardo
and
M.
Heyden
, “
Dissecting the conformational free energy of a small peptide in solution
,”
J. Phys. Chem. B
125
,
4634
4644
(
2021
).
63.
S.-T.
Lin
,
M.
Blanco
, and
W. A.
Goddard
, “
The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids
,”
J. Chem. Phys.
119
,
11792
11805
(
2003
).
64.
S.-T.
Lin
,
P. K.
Maiti
, and
W. A.
Goddard
, “
Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations
,”
J. Phys. Chem. B
114
,
8191
8198
(
2010
).
65.
T. A.
Pascal
,
D.
Schärf
,
Y.
Jung
, and
T. D.
Kühne
, “
On the absolute thermodynamics of water from computer simulations: A comparison of first-principles molecular dynamics, reactive and empirical force fields
,”
J. Chem. Phys.
137
,
244507
(
2012
).
66.
A. K.
Soper
, “
The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa
,”
Chem. Phys.
258
,
121
137
(
2000
).
67.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
321
(
2001
).
68.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
, “
Perspective: How good is DFT for water?
,”
J. Chem. Phys.
144
,
130901
(
2016
).
69.
P. J.
Linstrom
and
W. G.
Mallard
,
NIST Chemistry WebBook
, NIST Standard Reference Database Number 69 (
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2000
).
70.
C.
Zhang
,
L.
Spanu
, and
G.
Galli
, “
Entropy of liquid water from ab initio molecular dynamics
,”
J. Phys. Chem. B
115
,
14190
14195
(
2011
).
71.
A.
Botan
,
V.
Marry
, and
B.
Rotenberg
, “
Diffusion in bulk liquids: Finite-size effects in anisotropic systems
,”
Mol. Phys.
113
,
2674
2679
(
2015
).
72.
D. M.
Wilkins
,
D. E.
Manolopoulos
,
S.
Pipolo
,
D.
Laage
, and
J. T.
Hynes
, “
Nuclear quantum effects in water reorientation and hydrogen-bond dynamics
,”
J. Phys. Chem. Lett.
8
,
2602
2607
(
2017
).
73.
M.
Ceriotti
,
J.
Cuny
,
M.
Parrinello
, and
D. E.
Manolopoulos
, “
Nuclear quantum effects and hydrogen bond fluctuations in water
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
15591
15596
(
2013
).
74.
M.
Shafiei
,
M.
von Domaros
,
D.
Bratko
, and
A.
Luzar
, “
Anisotropic structure and dynamics of water under static electric fields
,”
J. Chem. Phys.
150
,
074505
(
2019
).
75.
G.
Sutmann
, “
Structure formation and dynamics of water in strong external electric fields
,”
J. Electroanal. Chem.
450
,
289
302
(
1998
).
76.
Y.
Peleg
,
A.
Yoffe
,
D.
Ehre
,
M.
Lahav
, and
I.
Lubomirsky
, “
The role of the electric field in electrofreezing
,”
J. Phys. Chem. C
123
,
30443
30446
(
2019
).
77.
M.
Heyden
and
M.
Havenith
, “
Statistically converged properties of water from ab initio molecular dynamics simulations
,” in
High Performance Computing in Science and Engineering, Garching/Munich 2009
(
Springer
,
2010
), pp.
687
698
.
You do not currently have access to this content.