We investigate the adiabatic approximation to the exact-exchange kernel for calculating correlation energies within the adiabatic-connection fluctuation–dissipation framework of time-dependent density functional theory. A numerical study is performed on a set of systems having bonds of different character (H2 and N2 molecules, H-chain, H2-dimer, solid-Ar, and the H2O-dimer). We find that the adiabatic kernel can be sufficient in strongly bound covalent systems, yielding similar bond lengths and binding energies. However, for non-covalent systems, the adiabatic kernel introduces significant errors around equilibrium geometry, systematically overestimating the interaction energy. The origin of this behavior is investigated by studying a model dimer composed of one-dimensional, closed-shell atoms, interacting via soft-Coulomb potentials. The kernel is shown to exhibit a strong frequency dependence at small to intermediate atomic separation that affects both the low-energy spectrum and the exchange-correlation hole obtained from the corresponding diagonal of the two-particle density matrix.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
4.
J. P.
Perdew
and
K.
Schmidt
,
AIP Conf. Proc.
577
,
1
(
2001
).
5.
D.
Rappoport
,
N. R. M.
Crawford
,
F.
Furche
, and
K.
Burke
, “
Which functional should I choose?
,” in
Computational Inorganic and Bioinorganic Chemistry
, edited by
E. I.
Solomon
,
R. B.
King
, and
R. A.
Scott
(
Wiley, John & Sons, Inc.
,
Chichester, Hoboken
,
2009
).
6.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
7.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
8.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
9.
Time-Dependent Density Functional theory
, edited by
M.
Marques
,
C.
Ullrich
,
F.
Nogueira
,
A.
Rubio
,
K.
Burke
, and
E.
Gross
(
Springer
,
Berlin, Heidelberg
,
2006
).
10.
M.
Lein
,
E. K. U.
Gross
, and
J. P.
Perdew
,
Phys. Rev. B
61
,
13431
(
2000
).
11.
A. D.
Kaplan
,
N. K.
Nepal
,
A.
Ruzsinszky
,
P.
Ballone
, and
J. P.
Perdew
,
Phys. Rev. B
105
,
035123
(
2022
).
12.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Sun
,
N. K.
Nepal
, and
A. D.
Kaplan
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2017850118
(
2021
).
13.
M.
Fuchs
and
X.
Gonze
,
Phys. Rev. B
65
,
235109
(
2002
).
14.
F.
Furche
and
T.
Van Voorhis
,
J. Chem. Phys.
122
,
164106
(
2005
).
15.
A.
Heßelmann
and
A.
Görling
,
Mol. Phys.
109
,
2473
(
2011
).
16.
E. K. U.
Gross
and
W.
Kohn
,
Phys. Rev. Lett.
55
,
2850
(
1985
).
17.
Y.
Suzuki
,
L.
Lacombe
,
K.
Watanabe
, and
N. T.
Maitra
,
Phys. Rev. Lett.
119
,
263401
(
2017
).
18.
J. I.
Fuks
,
L.
Lacombe
,
S. E. B.
Nielsen
, and
N. T.
Maitra
,
Phys. Chem. Chem. Phys.
20
,
26145
(
2018
).
19.
N. T.
Maitra
,
F.
Zhang
,
R. J.
Cave
, and
K.
Burke
,
J. Chem. Phys.
120
,
5932
(
2004
).
20.
M.
Hellgren
and
U.
von Barth
,
J. Chem. Phys.
131
,
044110
(
2009
).
21.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
22.
N. T.
Maitra
and
D. G.
Tempel
,
J. Chem. Phys.
125
,
184111
(
2006
).
23.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Am. Chem. Soc.
131
,
2818
(
2009
).
24.
M.
Hellgren
and
E. K. U.
Gross
,
Phys. Rev. A
85
,
022514
(
2012
).
25.
M.
Hellgren
and
E. K. U.
Gross
,
Phys. Rev. A
88
,
052507
(
2013
).
26.
N. D.
Woods
,
M. T.
Entwistle
, and
R. W.
Godby
,
Phys. Rev. B
104
,
125126
(
2021
).
27.
M.
Hellgren
and
U.
von Barth
,
J. Chem. Phys.
132
,
044101
(
2010
).
28.
Y.
Shigeta
,
K.
Hirao
, and
S.
Hirata
,
Phys. Rev. A
73
,
010502
(
2006
).
29.
A.
Heßelmann
and
A.
Görling
,
Mol. Phys.
108
,
359
(
2010
).
30.
T.
Olsen
and
K. S.
Thygesen
,
Phys. Rev. Lett.
112
,
203001
(
2014
).
31.
T.
Olsen
,
C. E.
Patrick
,
J. E.
Bates
,
A.
Ruzsinszky
, and
K. S.
Thygesen
,
npj Comput. Mater.
5
,
106
(
2019
).
32.
A.
Görling
,
Phys. Rev. A
57
,
3433
(
1998
).
33.
M.
Hellgren
and
U.
von Barth
,
Phys. Rev. B
78
,
115107
(
2008
).
34.
P.
Bleiziffer
,
M.
Krug
, and
A.
Görling
,
J. Chem. Phys.
142
,
244108
(
2015
).
35.
M.
Hellgren
,
N.
Colonna
, and
S.
de Gironcoli
,
Phys. Rev. B
98
,
045117
(
2018
).
36.
M.
Hellgren
and
L.
Baguet
,
Phys. Rev. Res.
3
,
033263
(
2021
).
37.
E. J.
Baerends
and
O. V.
Gritsenko
,
J. Phys. Chem. A
101
,
5383
(
1997
).
39.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
,
2nd ed.
(
Dover Publ.
,
New York
,
2003
).
40.
J.
Toulouse
,
I. C.
Gerber
,
G.
Jansen
,
A.
Savin
, and
J. G.
Ángyán
,
Phys. Rev. Lett.
102
,
096404
(
2009
).
41.
J.
Li
,
I.
Duchemin
,
X.
Blase
, and
V.
Olevano
,
SciPost Phys.
8
,
020
(
2020
).
42.
T.
Olsen
and
K. S.
Thygesen
,
J. Chem. Phys.
140
,
164116
(
2014
).
43.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
43
,
2429
(
1965
).
44.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A.
Dal Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A.
Otero-de-la-Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
,
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
45.
N.
Colonna
,
M.
Hellgren
, and
S.
de Gironcoli
,
Phys. Rev. B
90
,
125150
(
2014
).
46.
N.
Colonna
,
M.
Hellgren
, and
S.
de Gironcoli
,
Phys. Rev. B
93
,
195108
(
2016
).
47.
H.-V.
Nguyen
and
S.
de Gironcoli
,
Phys. Rev. B
79
,
205114
(
2009
).
48.
D. R.
Hamann
,
Phys. Rev. B
88
,
085117
(
2013
).
49.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
50.
M.
Schlipf
and
F.
Gygi
,
Comput. Phys. Commun.
196
,
36
(
2015
).
51.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
,
J. Chem. Phys.
122
,
094116
(
2005
).
52.
M.
Hellgren
,
D. R.
Rohr
, and
E. K. U.
Gross
,
J. Chem. Phys.
136
,
034106
(
2012
).
53.
M.
Hellgren
,
F.
Caruso
,
D. R.
Rohr
,
X.
Ren
,
A.
Rubio
,
M.
Scheffler
, and
P.
Rinke
,
Phys. Rev. B
91
,
165110
(
2015
).
54.
A.
Heßelmann
and
A.
Görling
,
Phys. Rev. Lett.
106
,
093001
(
2011
).
55.
M.
Motta
,
D. M.
Ceperley
,
G. K.-L.
Chan
,
J. A.
Gomez
,
E.
Gull
,
S.
Guo
,
C. A.
Jiménez-Hoyos
,
T. N.
Lan
,
J.
Li
,
F.
Ma
,
A. J.
Millis
,
N. V.
Prokof’ev
,
U.
Ray
,
G. E.
Scuseria
,
S.
Sorella
,
E. M.
Stoudenmire
,
Q.
Sun
,
I. S.
Tupitsyn
,
S. R.
White
,
D.
Zgid
, and
S.
Zhang
Simons Collaboration on the Many-Electron Problem
,
Phys. Rev. X
7
,
031059
(
2017
).
56.
T.
Lu
and
F.
Chen
,
J. Mol. Model.
19
,
5387
(
2013
).
57.
P.
Diep
and
J. K.
Johnson
,
J. Chem. Phys.
112
,
4465
(
2000
).
58.
K.
Rościszewski
,
B.
Paulus
,
P.
Fulde
, and
H.
Stoll
,
Phys. Rev. B
60
,
7905
(
1999
).
59.
G. S.
Tschumper
,
M. L.
Leininger
,
B. C.
Hoffman
,
E. F.
Valeev
,
H. F.
Schaefer
, and
M.
Quack
,
J. Chem. Phys.
116
,
690
(
2002
).
60.
M.
Hellgren
and
U.
von Barth
,
Phys. Rev. B
76
,
075107
(
2007
).
61.
A.
Castro
,
H.
Appel
,
M.
Oliveira
,
C. A.
Rozzi
,
X.
Andrade
,
F.
Lorenzen
,
M. A. L.
Marques
,
E. K. U.
Gross
, and
A.
Rubio
,
Phys. Status Solidi B
243
,
2465
(
2006
).
62.
O. V.
Gritsenko
and
E. J.
Baerends
,
Phys. Rev. A
54
,
1957
(
1996
).
63.
D. G.
Tempel
,
T. J.
Martínez
, and
N. T.
Maitra
,
J. Chem. Theory Comput.
5
,
770
(
2009
).
64.
M.
Hellgren
and
T.
Gould
,
J. Chem. Theory Comput.
15
,
4907
(
2019
).
65.
S. J. A.
van Gisbergen
,
P. R. T.
Schipper
,
O. V.
Gritsenko
,
E. J.
Baerends
,
J. G.
Snijders
,
B.
Champagne
, and
B.
Kirtman
,
Phys. Rev. Lett.
83
,
694
(
1999
).
66.
S.
Kümmel
,
L.
Kronik
, and
J. P.
Perdew
,
Phys. Rev. Lett.
93
,
213002
(
2004
).
You do not currently have access to this content.