The power conversion efficiencies of lead halide perovskite thin film solar cells have surged in the short time since their inception. Compounds, such as ionic liquids (ILs), have been explored as chemical additives and interface modifiers in perovskite solar cells, contributing to the rapid increase in cell efficiencies. However, due to the small surface area-to-volume ratio of the large grained polycrystalline halide perovskite films, an atomistic understanding of the interaction between ILs and perovskite surfaces is limited. Here, we use quantum dots (QDs) to study the coordinative surface interaction between phosphonium-based ILs and CsPbBr3. When native oleylammonium oleate ligands are exchanged off the QD surface with the phosphonium cation as well as the IL anion, a threefold increase in photoluminescent quantum yield of as-synthesized QDs is observed. The CsPbBr3 QD structure, shape, and size remain unchanged after ligand exchange, indicating only a surface ligand interaction at approximately equimolar additions of the IL. Increased concentrations of the IL lead to a disadvantageous phase change and a concomitant decrease in photoluminescent quantum yields. Valuable information regarding the coordinative interaction between certain ILs and lead halide perovskites has been elucidated and can be used for informed pairing of beneficial combinations of IL cations and anions.

1.
M.
Shahiduzzaman
,
L.
Wang
,
S.
Fukaya
,
E. Y.
Muslih
,
A.
Kogo
,
M.
Nakano
,
M.
Karakawa
,
K.
Takahashi
,
K.
Tomita
,
J.-M.
Nunzi
,
T.
Miyasaka
, and
T.
Taima
, “
Ionic liquid-assisted MAPbI3 nanoparticle-seeded growth for efficient and stable perovskite solar cells
,”
ACS Appl. Mater. Interfaces
13
(
18
),
21194
21206
(
2021
).
2.
L.
Chao
,
T.
Niu
,
Y.
Xia
,
Y.
Chen
, and
W.
Huang
, “
Ionic liquid for perovskite solar cells: An emerging solvent engineering technology
,”
Acc. Mater. Res.
2
,
1059
1070
(
2021
).
3.
T.
Niu
,
L.
Chao
,
W.
Gao
,
C.
Ran
,
L.
Song
,
Y.
Chen
,
L.
Fu
, and
W.
Huang
, “
Ionic liquids-enabled efficient and stable perovskite photovoltaics: Progress and challenges
,”
ACS Energy Lett.
6
,
1453
1479
(
2021
).
4.
W.
Hui
,
Y.
Yang
,
Q.
Xu
,
H.
Gu
,
S.
Feng
,
Z.
Su
,
M.
Zhang
,
J.
Wang
,
X.
Li
,
J.
Fang
,
F.
Xia
,
Y.
Xia
,
Y.
Chen
,
X.
Gao
, and
W.
Huang
, “
Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells
,”
Adv. Mater.
32
(
4
),
1906374
(
2020
).
5.
P.-K.
Kung
,
M.-H.
Li
,
P.-Y.
Lin
,
Y.-H.
Chiang
,
C.-R.
Chan
,
T.-F.
Guo
, and
P.
Chen
, “
A review of inorganic hole transport materials for perovskite solar cells
,”
Adv. Mater. Interfaces
5
(
22
),
1800882
(
2018
).
6.
S.
Ghosh
and
T.
Singh
, “
Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability
,”
Nano Energy
63
,
103828
(
2019
).
7.
L.
Chao
,
Y.
Xia
,
B.
Li
,
G.
Xing
,
Y.
Chen
, and
W.
Huang
, “
Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air
,”
Chem
5
(
4
),
995
1006
(
2019
).
8.
S. R.
Smock
,
Y.
Chen
,
A. J.
Rossini
, and
R. L.
Brutchey
, “
The surface chemistry and structure of colloidal lead halide perovskite nanocrystals
,”
Acc. Chem. Res.
54
(
3
),
707
718
(
2021
).
9.
M.
Kazes
,
T.
Udayabhaskararao
,
S.
Dey
, and
D.
Oron
, “
Effect of surface ligands in perovskite nanocrystals: Extending in and reaching out
,”
Acc. Chem. Res.
54
(
6
),
1409
1418
(
2021
).
10.
H.
Huang
,
M. I.
Bodnarchuk
,
S. V.
Kershaw
,
M. V.
Kovalenko
, and
A. L.
Rogach
, “
Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance
,”
ACS Energy Lett.
2
(
9
),
2071
2083
(
2017
).
11.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
, “
Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut
,”
Nano Lett.
15
(
6
),
3692
3696
(
2015
).
12.
L.
Protesescu
,
S.
Yakunin
,
S.
Kumar
,
J.
Bär
,
F.
Bertolotti
,
N.
Masciocchi
,
A.
Guagliardi
,
M.
Grotevent
,
I.
Shorubalko
,
M. I.
Bodnarchuk
,
C.-J.
Shih
, and
M. V.
Kovalenko
, “
Dismantling the ‘Red Wall' of colloidal perovskites: Highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals
,”
ACS Nano
11
(
3
),
3119
3134
(
2017
).
13.
M. V.
Kovalenko
,
L.
Protesescu
, and
M. I.
Bodnarchuk
, “
Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
,”
Science
358
(
6364
),
745
750
(
2017
).
14.
Y.
Xu
,
T.
Chen
,
Z.
Xie
,
W.
Jiang
,
L.
Wang
,
W.
Jiang
, and
X.
Zhang
, “
Enhanced performance of perovskite light-emitting-diodes based on ionic liquid modified CsPbBr3 nanocrystals
,”
Opt. Mater.
111
,
110620
(
2021
).
15.
T.
Chen
,
Y.
Xu
,
Z.
Xie
,
W.
Jiang
,
L.
Wang
, and
W.
Jiang
, “
Ionic liquid assisted preparation and modulation of the photoluminescence kinetics for highly efficient CsPbX3 nanocrystals with improved stability
,”
Nanoscale
12
(
17
),
9569
9580
(
2020
).
16.
D.
Chakraborty
,
N.
Preeyanka
,
A.
Akhuli
, and
M.
Sarkar
, “
Enhancing the stability and photoluminescence quantum yield of CsPbX3 (X = Cl and Br) perovskite nanocrystals by treatment with imidazolium-based ionic liquids through surface modification
,”
J. Phys. Chem. C
125
(
48
),
26652
26660
(
2021
).
17.
Z.
Hens
and
J. C.
Martins
, “
A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals
,”
Chem. Mater.
25
(
8
),
1211
1221
(
2013
).
18.
S. R.
Smock
,
T. J.
Williams
, and
R. L.
Brutchey
, “
Quantifying the thermodynamics of ligand binding to CsPbBr3 quantum dots
,”
Angew. Chem., Int. Ed.
57
(
36
),
11711
11715
(
2018
).
19.
Y.
Chen
,
S. R.
Smock
,
A. H.
Flintgruber
,
F. A.
Perras
,
R. L.
Brutchey
, and
A. J.
Rossini
, “
Surface termination of CsPbBr3 perovskite quantum dots determined by solid-state NMR spectroscopy
,”
J. Am. Chem. Soc.
142
(
13
),
6117
6127
(
2020
).
20.
L.-J.
Xu
,
M.
Worku
,
H.
Lin
,
Z.
Xu
,
Q.
He
,
C.
Zhou
,
H.
Zhang
,
Y.
Xin
,
S.
Lteif
,
J.
Xue
, and
B.
Ma
, “
Highly Emissive and stable organic–perovskite nanocomposite thin films with phosphonium passivation
,”
J. Phys. Chem. Lett.
10
(
19
),
5923
5928
(
2019
).
21.
R. R.
Knauf
,
J. C.
Lennox
, and
J. L.
Dempsey
, “
Quantifying ligand exchange reactions at CdSe nanocrystal surfaces
,”
Chem. Mater.
28
(
13
),
4762
4770
(
2016
).
22.
J. A.
Kloepfer
,
S. E.
Bradforth
, and
J. L.
Nadeau
, “
Photophysical properties of biologically compatible CdSe quantum dot structures
,”
J. Phys. Chem. B
109
(
20
),
9996
10003
(
2005
).
23.
P.
Cottingham
and
R. L.
Brutchey
, “
On the crystal structure of colloidally prepared CsPbBr3 quantum dots
,”
Chem. Commun.
52
(
30
),
5246
5249
(
2016
).
24.
M. C.
Brennan
,
J. E.
Herr
,
T. S.
Nguyen-Beck
,
J.
Zinna
,
S.
Draguta
,
S.
Rouvimov
,
J.
Parkhill
, and
M.
Kuno
, “
Origin of the size-dependent Stokes shift in CsPbBr3 perovskite nanocrystals
,”
J. Am. Chem. Soc.
139
,
12201
(
2017
).
25.
B.
Fritzinger
,
R. K.
Capek
,
K.
Lambert
,
J. C.
Martins
, and
Z.
Hens
, “
Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots
,”
J. Am. Chem. Soc.
132
(
29
),
10195
10201
(
2010
).
26.
J.
Ye
,
Z.
Li
,
D. J.
Kubicki
,
Y.
Zhang
,
L.
Dai
,
C.
Otero-Martínez
,
M. A.
Reus
,
R.
Arul
,
K. R.
Dudipala
,
Z.
Andaji-Garmaroudi
,
Y.-T.
Huang
,
Z.
Li
,
Z.
Chen
,
P.
Müller-Buschbaum
,
H.-L.
Yip
,
S. D.
Stranks
,
C. P.
Grey
,
J. J.
Baumberg
,
N. C.
Greenham
,
L.
Polavarapu
,
A.
Rao
, and
R. L. Z.
Hoye
, “
Elucidating the role of antisolvents on the surface chemistry and optoelectronic properties of CsPbBrxI3-x perovskite nanocrystals
,”
J. Am. Chem. Soc.
144
(
27
),
12102
12115
(
2022
).
27.
M. I.
Bodnarchuk
,
S. C.
Boehme
,
S.
ten Brinck
,
C.
Bernasconi
,
Y.
Shynkarenko
,
F.
Krieg
,
R.
Widmer
,
B.
Aeschlimann
,
D.
Günther
,
M. V.
Kovalenko
, and
I.
Infante
, “
Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals
,”
ACS Energy Lett.
4
(
1
),
63
74
(
2019
).
28.
T.
Udayabhaskararao
,
L.
Houben
,
H.
Cohen
,
M.
Menahem
,
I.
Pinkas
,
L.
Avram
,
T.
Wolf
,
A.
Teitelboim
,
M.
Leskes
,
O.
Yaffe
,
D.
Oron
, and
M.
Kazes
, “
A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation
,”
Chem. Mater.
30
(
1
),
84
93
(
2018
).
29.
Z.
Liu
,
Y.
Bekenstein
,
X.
Ye
,
S. C.
Nguyen
,
J.
Swabeck
,
D.
Zhang
,
S.-T.
Lee
,
P.
Yang
,
W.
Ma
, and
A. P.
Alivisatos
, “
Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals
,”
J. Am. Chem. Soc.
139
(
15
),
5309
5312
(
2017
).
30.
J.
De Roo
,
M.
Ibáñez
,
P.
Geiregat
,
G.
Nedelcu
,
W.
Walravens
,
J.
Maes
,
J. C.
Martins
,
I.
Van Driessche
,
M. V.
Kovalenko
, and
Z.
Hens
, “
Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals
,”
ACS Nano
10
(
2
),
2071
2081
(
2016
).
31.
S.
Toso
,
D.
Baranov
, and
L.
Manna
, “
Metamorphoses of cesium lead halide nanocrystals
,”
Acc. Chem. Res.
54
(
3
),
498
508
(
2021
).
32.
F.
Palazon
,
G.
Almeida
,
Q. A.
Akkerman
,
L.
De Trizio
,
Z.
Dang
,
M.
Prato
, and
L.
Manna
, “
Changing the dimensionality of cesium lead bromide nanocrystals by reversible postsynthesis transformations with amines
,”
Chem. Mater.
29
(
10
),
4167
4171
(
2017
).
33.
M.
Fuerhacker
,
T. M.
Haile
,
D.
Kogelnig
,
A.
Stojanovic
, and
B.
Keppler
, “
Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge
,”
Water Sci. Technol.
65
(
10
),
1765
1773
(
2012
).
34.
H. G.
Mayfield
and
W. E.
Bull
, “
Co-ordinating tendencies of the hexafluorophosphate ion
,”
J. Chem. Soc., A
1971
,
2279
.
35.
S. L.
Abiodun
,
M. Y.
Gee
, and
A. B.
Greytak
, “
Combined NMR and isothermal titration calorimetry investigation resolves conditions for ligand exchange and phase transformation in CsPbBr3 nanocrystals
,”
J. Phys. Chem. C
125
(
32
),
17897
17905
(
2021
).
36.
D. P.
Nenon
,
K.
Pressler
,
J.
Kang
,
B. A.
Koscher
,
J. H.
Olshansky
,
W. T.
Osowiecki
,
M. A.
Koc
,
L.-W.
Wang
, and
A. P.
Alivisatos
, “
Design principles for trap-free CsPbX3 nanocrystals: Enumerating and eliminating surface halide vacancies with softer lewis bases
,”
J. Am. Chem. Soc.
140
(
50
),
17760
17772
(
2018
).
37.
S.
ten Brinck
,
F.
Zaccaria
, and
I.
Infante
, “
Defects in lead halide perovskite nanocrystals: Analogies and (many) differences with the bulk
,”
ACS Energy Lett.
4
(
11
),
2739
2747
(
2019
).
38.
T. J.
Smart
,
H.
Takenaka
,
T. A.
Pham
,
L. Z.
Tan
,
J. Z.
Zhang
,
T.
Ogitsu
, and
Y.
Ping
, “
Enhancing defect tolerance with ligands at the surface of lead halide perovskites
,”
J. Phys. Chem. Lett.
12
(
27
),
6299
6304
(
2021
).

Supplementary Material

You do not currently have access to this content.