The development of solid-state electrolytes (SSEs) with high lithium ionic conductivities is critical for the realization of all-solid-state Li-ion batteries. Crystal structure distortions, Li polyhedron volumes, and anion charges in SSEs are reported to affect the energy landscapes, and it is paramount to investigate their correlations. Our works uncover the cooperative effect of lithium site distortions, anion charges, and lattice volumes on Li-ion migration energy barrier in superionic conductors of LiMS2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) and Li2MO3 (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni). Combined with the Least Absolute Shrinkage and Selection Operator analyses, the volume and Continuous symmetrical methods (CSMs) of Li tetrahedral (Tet) sites appear to have a larger effect on the manipulation of Ea for Li migration, compared to that of Li octahedral (Oct) sites, which is further confirmed by the results from the face-centered cubic (fcc) anion lattice model. For the Tet–Oct–Tet Li migration path, the CSM (the volume of Li site) has a negative (positive) correlation with Ea, while for the Oct–Tet–Oct Li migration paths, opposite correlations have been observed. The understanding of the correlation between site preference, anion charge, lattice volume, and structural distortion as well as the prediction model of Ea in terms of these three factors, namely, C–V–D model, could be useful for the design of solid-state electrolytes with lower activation energy.

1.
E.
Pomerantseva
,
F.
Bonaccorso
,
X.
Feng
,
Y.
Cui
, and
Y.
Gogotsi
, “
Energy storage: The future enabled by nanomaterials
,”
Science
366
(
6468
),
eaan8285
(
2019
).
2.
B.
Dunn
,
H.
Kamath
, and
J.-M.
Tarascon
, “
Electrical energy storage for the grid: A battery of choices
,”
Science
334
(
6058
),
928
935
(
2011
).
3.
G.
Harper
,
R.
Sommerville
,
E.
Kendrick
,
L.
Driscoll
,
P.
Slater
,
R.
Stolkin
,
A.
Walton
,
P.
Christensen
,
O.
Heidrich
,
S.
Lambert
,
A.
Abbott
,
K.
Ryder
,
L.
Gaines
, and
P.
Anderson
, “
Recycling lithium-ion batteries from electric vehicles
,”
Nature
575
(
7781
),
75
86
(
2019
).
4.
R.
Murugan
,
V.
Thangadurai
, and
W.
Weppner
, “
Fast lithium ion conduction in garnet-type Li7La3Zr2O12
,”
Angew. Chem., Int. Ed.
46
(
41
),
7778
7781
(
2007
).
5.
H.
Morimoto
,
H.
Awano
,
J.
Terashima
,
Y.
Shindo
,
S.
Nakanishi
,
N.
Ito
,
K.
Ishikawa
, and
S.
Tobishima
, “
Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2−x(PO4)3 (x = 0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell
,”
J. Power Sources
240
,
636
643
(
2013
).
6.
N.
Kamaya
,
K.
Homma
,
Y.
Yamakawa
,
M.
Hirayama
,
R.
Kanno
,
M.
Yonemura
,
T.
Kamiyama
,
Y.
Kato
,
S.
Hama
,
K.
Kawamoto
, and
A.
Mitsui
, “
A lithium superionic conductor
,”
Nat. Mater.
10
(
9
),
682
686
(
2011
).
7.
Y.
Seino
,
T.
Ota
,
K.
Takada
,
A.
Hayashi
, and
M.
Tatsumisago
, “
A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
,”
Energy Environ. Sci.
7
(
2
),
627
631
(
2014
).
8.
F.
Liang
,
Y.
Sun
,
Y.
Yuan
,
J.
Huang
,
M.
Hou
, and
J.
Lu
, “
Designing inorganic electrolytes for solid-state Li-ion batteries: A perspective of LGPS and garnet
,”
Mater. Today
50
,
418
441
(
2021
).
9.
Y.
Wang
,
W. D.
Richards
,
S. P.
Ong
,
L. J.
Miara
,
J. C.
Kim
,
Y.
Mo
, and
G.
Ceder
, “
Design principles for solid-state lithium superionic conductors
,”
Nat. Mater.
14
(
10
),
1026
(
2015
).
10.
N.
Adelstein
and
B. C.
Wood
, “
Role of dynamically frustrated bond disorder in a Li+ superionic solid electrolyte
,”
Chem. Mater.
28
(
20
),
7218
7231
(
2016
).
11.
D.
Di Stefano
,
A.
Miglio
,
K.
Robeyns
,
Y.
Filinchuk
,
M.
Lechartier
,
A.
Senyshyn
,
H.
Ishida
,
S.
Spannenberger
,
D.
Prutsch
,
S.
Lunghammer
,
D.
Rettenwander
,
M.
Wilkening
,
B.
Roling
,
Y.
Kato
, and
G.
Hautier
, “
Superionic diffusion through frustrated energy landscape
,”
Chem
5
(
9
),
2450
2460
(
2019
).
12.
R.
Chen
,
Z.
Xu
,
Y.
Lin
,
B.
Lv
,
S.-H.
Bo
, and
H.
Zhu
, “
Influence of structural distortion and lattice dynamics on Li-ion diffusion in Li3OCl1−xBrx superionic conductors
,”
ACS Appl. Energy Mater.
4
(
3
),
2107
2114
(
2021
).
13.
K.
Jun
,
Y.
Sun
,
Y.
Xiao
,
Y.
Zeng
,
R.
Kim
,
H.
Kim
,
L. J.
Miara
,
D.
Im
,
Y.
Wang
, and
G.
Ceder
, “
Lithium superionic conductors with corner-sharing frameworks
,”
Nat. Mater.
21
(
8
),
924
931
(
2022
).
14.
S. P.
Culver
,
A. G.
Squires
,
N.
Minafra
,
C. W. F.
Armstrong
,
T.
Krauskopf
,
F.
Böcher
,
C.
Li
,
B. J.
Morgan
, and
W. G.
Zeier
, “
Evidence for a solid-electrolyte inductive effect in the superionic conductor Li10Ge1−xSnxP2S12
,”
J. Am. Chem. Soc.
142
(
50
),
21210
21219
(
2020
).
15.
Z.
Xu
,
X.
Chen
,
R.
Chen
,
X.
Li
, and
H.
Zhu
, “
Anion charge and lattice volume dependent lithium ion migration in compounds with fcc anion sublattices
,”
npj Comput. Mater.
6
(
1
),
47
(
2020
).
16.
Z.
Xu
and
H.
Zhu
, “
Anion charge and lattice volume maps for searching lithium superionic conductors
,”
Chem. Mater.
32
(
11
),
4618
4626
(
2020
).
17.
Y.
Gao
,
A. M.
Nolan
,
P.
Du
,
Y.
Wu
,
C.
Yang
,
Q.
Chen
,
Y.
Mo
, and
S.-H.
Bo
, “
Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors
,”
Chem. Rev.
120
(
13
),
5954
6008
(
2020
).
18.
X.
He
,
Q.
Bai
,
Y.
Liu
,
A. M.
Nolan
,
C.
Ling
, and
Y.
Mo
, “
Crystal structural framework of lithium super-ionic conductors
,”
Adv. Energy Mater.
9
(
43
),
1902078
(
2019
).
19.
Y.
Zhang
,
X.
He
,
Z.
Chen
,
Q.
Bai
,
A. M.
Nolan
,
C. A.
Roberts
,
D.
Banerjee
,
T.
Matsunaga
,
Y.
Mo
, and
C.
Ling
, “
Unsupervised discovery of solid-state lithium ion conductors
,”
Nat. Commun.
10
(
1
),
5260
(
2019
).
20.
Z.-M.
Xu
,
S.-H.
Bo
, and
H.
Zhu
, “
LiCrS2 and LiMnS2 cathodes with extraordinary mixed electron–ion conductivities and favorable interfacial compatibilities with sulfide electrolyte
,”
ACS Appl. Mater. Interfaces
10
(
43
),
36941
36953
(
2018
).
21.
M. Y.
Yang
,
S.
Kim
,
K.
Kim
,
W.
Cho
,
J. W.
Choi
, and
Y. S.
Nam
, “
Role of ordered Ni atoms in Li layers for Li-rich layered cathode materials
,”
Adv. Funct. Mater.
27
(
35
),
1700982
(
2017
).
22.
P.
Xiao
,
Z. Q.
Deng
,
A.
Manthiram
, and
G.
Henkelman
, “
Calculations of oxygen stability in lithium-rich layered cathodes
,”
J. Phys. Chem. C
116
(
44
),
23201
23204
(
2012
).
23.
Y. A.
Zulueta
,
M. T.
Nguyen
, and
J. A.
Dawson
, “
Boosting Li-ion transport in transition-metal-doped Li2SnO3
,”
Inorg. Chem.
59
(
16
),
11841
11846
(
2020
).
24.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
(
14
),
146401
(
2007
).
25.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
(
4A
),
A1133
A1138
(
1965
).
26.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
27.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
28.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
29.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
(
22
),
9901
9904
(
2000
).
30.
M.
Yu
and
D. R.
Trinkle
, “
Accurate and efficient algorithm for bader charge integration
,”
J. Chem. Phys.
134
(
6
),
064111
(
2011
).
31.
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
, “
Python materials genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Comput. Mater. Sci.
68
,
314
319
(
2013
).
32.
D.
Waroquiers
,
X.
Gonze
,
G.-M.
Rignanese
,
C.
Welker-Nieuwoudt
,
F.
Rosowski
,
M.
Göbel
,
S.
Schenk
,
P.
Degelmann
,
R.
André
,
R.
Glaum
, and
G.
Hautier
, “
Statistical analysis of coordination environments in oxides
,”
Chem. Mater.
29
(
19
),
8346
8360
(
2017
).
33.
A. Y.
Toukmaji
and
J. A.
Board
, “
Ewald summation techniques in perspective: A survey
,”
Comput. Phys. Commun.
95
(
2–3
),
73
92
(
1996
).
34.
Y.
Shin
,
H.
Ding
, and
K. A.
Persson
, “
Revealing the intrinsic Li mobility in the Li2MnO3 lithium-excess material
,”
Chem. Mater.
28
(
7
),
2081
2088
(
2016
).
35.
R.
Xiao
,
H.
Li
, and
L.
Chen
, “
Density functional investigation on Li2MnO3
,”
Chem. Mater.
24
(
21
),
4242
4251
(
2012
).
36.
Z.
Xu
,
X.
Chen
,
H.
Zhu
, and
X.
Li
, “
Anharmonic cation–anion coupling dynamics assisted lithium‐ion diffusion in sulfide solid electrolytes
,”
Adv. Mater.
34
(
49
),
2207411
(
2022
).
37.
K.
Kim
and
D. J.
Siegel
, “
Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes
,”
J. Mater. Chem. A
7
(
7
),
3216
3227
(
2019
).
38.
C.
Lv
,
X.
Zhou
,
L.
Zhong
,
C.
Yan
,
M.
Srinivasan
,
Z. W.
Seh
,
C.
Liu
,
H.
Pan
,
S.
Li
,
Y.
Wen
, and
Q.
Yan
, “
Machine learning: An advanced platform for materials development and state prediction in lithium‐ion batteries
,”
Adv. Mater.
34
(
25
),
2101474
(
2021
).
39.
A. D.
Sendek
,
E. D.
Cubuk
,
E. R.
Antoniuk
,
G.
Cheon
,
Y.
Cui
, and
E. J.
Reed
, “
Machine learning-assisted discovery of solid Li-ion conducting materials
,”
Chem. Mater.
31
(
2
),
342
352
(
2018
).
40.
H.
Guo
,
Q.
Wang
,
A.
Stuke
,
A.
Urban
, and
N.
Artrith
, “
Accelerated atomistic modeling of solid-state battery materials with machine learning
,”
Front. Energy Res.
9
,
695902
(
2021
).
41.
S.
Curtarolo
,
W.
Setyawan
,
S.
Wang
,
J.
Xue
,
K.
Yang
,
R. H.
Taylor
,
L. J.
Nelson
,
G. L. W.
Hart
,
S.
Sanvito
,
M.
Buongiorno-Nardelli
,
N.
Mingo
, and
O.
Levy
, “
AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
,”
Comput. Mater. Sci.
58
,
227
235
(
2012
).

Supplementary Material

You do not currently have access to this content.