Despite their chemical simplicity, the spectroscopic investigation of light hydrides, such as hydrogen sulfide, is challenging due to strong hyperfine interactions and/or anomalous centrifugal-distortion effects. Several hydrides have already been detected in the interstellar medium, and the list includes H2S and some of its isotopologues. Astronomical observation of isotopic species and, in particular, those bearing deuterium is important to gain insights into the evolutionary stage of astronomical objects and to shed light on interstellar chemistry. These observations require a very accurate knowledge of the rotational spectrum, which is so far limited for mono-deuterated hydrogen sulfide, HDS. To fill this gap, high-level quantum-chemical calculations and sub-Doppler measurements have been combined for the investigation of the hyperfine structure of the rotational spectrum in the millimeter- and submillimeter-wave region. In addition to the determination of accurate hyperfine parameters, these new measurements together with the available literature data allowed us to extend the centrifugal analysis using a Watson-type Hamiltonian and a Hamiltonian-independent approach based on the Measured Active Ro-Vibrational Energy Levels (MARVEL) procedure. The present study thus permits to model the rotational spectrum of HDS from the microwave to far-infrared region with great accuracy, thereby accounting for the effect of the electric and magnetic interactions due to the deuterium and hydrogen nuclei.

1.
M.
Ito
, “
Spectroscopy and dynamics of aromatic molecules having large-amplitude motions
,”
J. Phys. Chem.
91
,
517
526
(
1987
).
2.
H. V. L.
Nguyen
and
I.
Kleiner
, “
Understanding (coupled) large amplitude motions: The interplay of microwave spectroscopy, spectral modeling, and quantum chemistry
,”
Phys. Sci. Rev.
7
,
48
(
2020
).
3.
F.
Xie
,
N. A.
Seifert
,
M.
Heger
,
J.
Thomas
,
W.
Jäger
, and
Y.
Xu
, “
The rich conformational landscape of perillyl alcohol revealed by broadband rotational spectroscopy and theoretical modelling
,”
Phys. Chem. Chem. Phys.
21
,
15408
15416
(
2019
).
4.
W. G. D. P.
Silva
,
T.
Poonia
, and
J.
van Wijngaarden
, “
Targeting the rich conformational landscape of N-allylmethylamine using rotational spectroscopy and quantum mechanical calculations
,”
ChemPhysChem
21
,
2515
2522
(
2020
).
5.
M.
Melosso
,
A.
Melli
,
L.
Spada
,
Y.
Zheng
,
J.
Chen
,
M.
Li
,
T.
Lu
,
G.
Feng
,
Q.
Gou
,
L.
Dore
,
V.
Barone
, and
C.
Puzzarini
, “
Rich collection of n-propylamine and isopropylamine conformers: Rotational fingerprints and state-of-the-art quantum chemical investigation
,”
J. Phys. Chem. A
124
,
1372
1381
(
2020
).
6.
W. G. D. P.
Silva
,
G.
Daudet
,
S.
Perez
,
S.
Thorwirth
, and
J.
van Wijngaarden
, “
Conformational preferences of diallylamine: A rotational spectroscopic and theoretical study
,”
J. Chem. Phys.
154
,
164303
(
2021
).
7.
F.
Xie
,
N. A.
Seifert
,
A. S.
Hazrah
,
W.
Jäger
, and
Y.
Xu
, “
Conformational landscape, chirality recognition and chiral analyses: Rotational spectroscopy of tetrahydro-2-furoic acid⋯propylene oxide conformers
,”
ChemPhysChem
22
,
455
460
(
2021
).
8.
C.
Puzzarini
,
L.
Spada
,
S.
Alessandrini
, and
V.
Barone
, “
The challenge of non-covalent interactions: Theory meets experiment for reconciling accuracy and interpretation
,”
J. Phys.: Condens. Matter
32
,
343002
(
2020
).
9.
W.
Li
,
L.
Spada
,
N.
Tasinato
,
S.
Rampino
,
L.
Evangelisti
,
A.
Gualandi
,
P. G.
Cozzi
,
S.
Melandri
,
V.
Barone
, and
C.
Puzzarini
, “
Theory meets experiment for noncovalent complexes: The puzzling case of Pnicogen interactions
,”
Angew. Chem., Int. Ed.
57
,
13853
13857
(
2018
).
10.
D. A.
Obenchain
,
L.
Spada
,
S.
Alessandrini
,
S.
Rampino
,
S.
Herbers
,
N.
Tasinato
,
M.
Mendolicchio
,
P.
Kraus
,
J.
Gauss
,
C.
Puzzarini
,
J.-U.
Grabow
, and
V.
Barone
, “
Unveiling the sulfur–sulfur bridge: Accurate structural and energetic characterization of a homochalcogen intermolecular bond
,”
Angew. Chem., Int. Ed.
57
,
15822
15826
(
2018
).
11.
H. S. P.
Müller
,
P.
Pracna
, and
V.-M.
Horneman
, “
The v10 = 1 level of propyne, H3C–CCH, and its interactions with v9 = 1 and v10 = 2
,”
J. Mol. Spectrosc.
216
,
397
407
(
2002
).
12.
L.
Bizzocchi
,
F.
Tamassia
,
J.
Laas
,
B. M.
Giuliano
,
C.
Degli Esposti
,
L.
Dore
,
M.
Melosso
,
E.
Canè
,
A.
Pietropolli-Charmet
,
H. S. P.
Müller
et al, “
Rotational and high-resolution infrared spectrum of HC3N: Global ro-vibrational analysis and improved line catalog for astrophysical observations
,”
Astrophys. J., Suppl. Ser.
233
,
11
(
2017
).
13.
M.
Melosso
,
L.
Dore
,
J.
Gauss
, and
C.
Puzzarini
, “
Deuterium hyperfine splittings in the rotational spectrum of NH2D as revealed by Lamb-dip spectroscopy
,”
J. Mol. Spectrosc.
370
,
111291
(
2020
).
14.
M.
Melosso
,
M. L.
Diouf
,
L.
Bizzocchi
,
M. E.
Harding
,
F. M. J.
Cozijn
,
C.
Puzzarini
, and
W.
Ubachs
, “
Hyperfine-resolved near-infrared spectra of HO217
,”
J. Phys. Chem. A
125
,
7884
7890
(
2021
).
15.
K.
Yamada
, “
Resonance between ground and excited vibrational state due to centrifugal distortion coupling in the rotational spectrum of HNCO
,”
J. Mol. Spectrosc.
81
,
139
151
(
1980
).
16.
L. H.
Coudert
, “
Extreme anomalous centrifugal distortion in methylene
,”
J. Chem. Phys.
153
,
144115
(
2020
).
17.
S.
Urban
and
K. M. T.
Yamada
, “
A breakdown of the Watson-type Hamiltonian for some asymmetric top molecules
,”
J. Mol. Spectrosc.
160
,
279
288
(
1993
).
18.
I.
Scivetti
,
J.
Kohanoff
, and
N. I.
Gidopoulos
, “
On the treatment of singularities of the Watson Hamiltonian for nonlinear molecules
,”
Int. J. Quant. Chem.
111
,
307
317
(
2011
).
19.
C.
Puzzarini
,
J. F.
Stanton
, and
J.
Gauss
, “
Quantum-chemical calculation of spectroscopic parameters for rotational spectroscopy
,”
Int. Rev. Phys. Chem.
29
,
273
367
(
2010
).
20.
C.
Puzzarini
,
J.
Bloino
,
N.
Tasinato
, and
V.
Barone
, “
Accuracy and interpretability: The devil and the holy grail. new routes across old boundaries in computational spectroscopy
,”
Chem. Rev.
119
,
8131
8191
(
2019
).
21.
C.
Puzzarini
,
G.
Cazzoli
,
M. E.
Harding
,
J.
Vázquez
, and
J.
Gauss
, “
A new experimental absolute nuclear magnetic shielding scale for oxygen based on the rotational hyperfine structure of HO217
,”
J. Chem. Phys.
131
,
234304
(
2009
).
22.
T.
Helgaker
,
J.
Gauss
,
G.
Cazzoli
, and
C.
Puzzarini
, “
33S hyperfine interactions in H2S and SO2 and revision of the sulfur nuclear magnetic shielding scale
,”
J. Chem. Phys.
139
,
244308
(
2013
).
23.
G.
Cazzoli
,
V.
Lattanzi
,
J. L.
Alonso
,
J.
Gauss
, and
C.
Puzzarini
, “
The hyperfine structure of the rotational spectrum of HDO and its extension to the THz region: Accurate rest frequencies and spectroscopic parameters for astrophysical observations
,”
Astrophys. J.
806
,
100
(
2015
).
24.
C.
Puzzarini
,
G.
Cazzoli
,
M. E.
Harding
,
J.
Vázquez
, and
J.
Gauss
, “
The hyperfine structure in the rotational spectra of DO217 and HD17O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen
,”
J. Chem. Phys.
142
,
124308
(
2015
).
25.
M.
Melosso
,
L.
Dore
,
F.
Tamassia
,
C. L.
Brogan
,
T. R.
Hunter
, and
B. A.
McGuire
, “
The submillimeter rotational spectrum of ethylene glycol up to 890 GHz and application to ALMA band 10 spectral line data of NGC 6334I
,”
J. Phys. Chem. A
124
,
240
246
(
2019
).
26.
M.
Melosso
,
L.
Bizzocchi
,
L.
Dore
,
Z.
Kisiel
,
N.
Jiang
,
S.
Spezzano
,
P.
Caselli
,
J.
Gauss
, and
C.
Puzzarini
, “
Improved centrifugal and hyperfine analysis of ND2H and NH2D and its application to the spectral line survey of L1544
,”
J. Mol. Spectrosc.
377
,
111431
(
2021
).
27.
A. C.
Cheung
,
D. M.
Rank
,
C. H.
Townes
,
D. D.
Thornton
, and
W. J.
Welch
, “
Detection of water in interstellar regions by its microwave radiation
,”
Nature
221
,
626
628
(
1969
).
28.
B. E.
Turner
,
N.
Fourikis
,
M.
Morris
,
P.
Palmer
, and
B.
Zuckerman
, “
Microwave detection of interstellar HDO
,”
Astrophys. J.
198
,
L125
L128
(
1975
).
29.
T.
Jacq
,
P.
Jewell
,
C.
Henkel
,
C.
Walmsley
, and
A.
Baudry
, “
H2(0-18) in hot dense molecular cloud cores
,”
Astron. Astrophys.
199
,
L5
L8
(
1988
).
30.
Å.
Hjalmarson
,
P.
Bergman
,
N.
Biver
,
H.-G.
Florén
,
U.
Frisk
,
T.
Hasegawa
,
K.
Justtanont
,
B.
Larsson
,
S.
Lundin
,
M.
Olberg
et al, “
Recent astronomy highlights from the Odin satellite
,”
Adv. Space Res.
36
,
1031
1047
(
2005
).
31.
H. M.
Butner
,
S. B.
Charnley
,
C.
Ceccarelli
,
S. D.
Rodgers
,
J. R.
Pardo
,
B.
Parise
,
J.
Cernicharo
, and
G. R.
Davis
, “
Discovery of interstellar heavy water
,”
Astrophys. J.
659
,
L137
(
2007
).
32.
E. F.
van Dishoeck
,
D. J.
Jansen
,
P.
Schilke
, and
T. G.
Phillips
, “
Detection of the interstellar NH2 radical
,”
Astrophys. J.
416
,
L83
(
1993
).
33.
M.
Melosso
,
L.
Bizzocchi
,
O.
Sipilä
,
B. M.
Giuliano
,
L.
Dore
,
F.
Tamassia
,
M.-A.
Martin-Drumel
,
O.
Pirali
,
E.
Redaelli
, and
P.
Caselli
, “
First detection of NHD and ND2 in the interstellar medium. Amidogen deuteration in IRAS 16293–2422
,”
Astron. Astrophys.
641
,
A153
(
2020
).
34.
J. M.
Hollis
,
P. R.
Jewell
, and
F. J.
Lovas
, “
Confirmation of interstellar methylene
,”
Astrophys. J.
438
,
259
264
(
1995
).
35.
P.
Thaddeus
,
M. L.
Kutner
,
A. A.
Penzias
,
R. W.
Wilson
, and
K. B.
Jefferts
, “
Interstellar hydrogen sulfide
,”
Astrophys. J.
176
,
L73
(
1972
).
36.
Y. C.
Minh
,
W. M.
Irvine
,
D.
McGonagle
, and
L. M.
Ziurys
, “
Observations of the H2S toward OMC-1
,”
Astrophys. J.
360
,
136
141
(
1990
).
37.
C.
Vastel
,
T. G.
Phillips
,
C.
Ceccarelli
, and
J.
Pearson
, “
First detection of doubly deuterated hydrogen sulfide
,”
Astrophys. J.
593
,
L97
(
2003
).
38.
G. H.
Macdonald
,
A. G.
Gibb
,
R. J.
Habing
, and
T. J.
Millar
, “
A 330-360 GHz spectral survey of G34.3+0.15. I. Data and physical analysis
,”
Astrophys. J., Suppl. Ser.
119
,
333
367
(
1996
).
39.
M. N.
Drozdovskaya
,
E. F.
van Dishoeck
,
J. K.
Jørgensen
,
U.
Calmonte
,
M. H. D.
van der Wiel
,
A.
Coutens
,
H.
Calcutt
,
H. S. P.
Müller
,
P.
Bjerkeli
,
M. V.
Persson
,
S. F.
Wampfler
, and
K.
Altwegg
, “
The ALMA-PILS survey: The sulphur connection between protostars and comets: IRAS 16293–2422 B and 67P/Churyumov–Gerasimenko
,”
Mon. Not. R. Astron. Soc.
476
,
4949
4964
(
2018
).
40.
Y.
Aikawa
,
V.
Wakelam
,
F.
Hersant
,
R. T.
Garrod
, and
E.
Herbst
, “
From prestellar to protostellar cores. II. Time dependence and deuterium fractionation
,”
Astrophys. J.
760
,
40
(
2012
).
41.
H.-R.
Chen
,
S.-Y.
Liu
,
Y.-N.
Su
, and
M.-Y.
Wang
, “
Deuterium fractionation as an evolutionary probe in massive protostellar/cluster cores
,”
Astrophys. J.
743
,
196
(
2011
).
42.
M.
Emprechtinger
,
P.
Caselli
,
N. H.
Volgenau
,
J.
Stutzki
, and
M. C.
Wiedner
, “
The N2D+/N2H+ ratio as an evolutionary tracer of Class 0 protostars
,”
Astron. Astrophys.
493
,
89
105
(
2009
).
43.
F.
Fontani
,
A.
Palau
,
P.
Caselli
,
Á.
Sánchez-Monge
,
M. J.
Butler
,
J. C.
Tan
,
I.
Jiménez-Serra
,
G.
Busquet
,
S.
Leurini
, and
M.
Audard
, “
Deuteration as an evolutionary tracer in massive-star formation
,”
Astron. Astrophys.
529
,
L7
(
2011
).
44.
E.
Bianchi
,
C.
Ceccarelli
,
C.
Codella
,
J.
Enrique-Romero
,
C.
Favre
, and
B.
Lefloch
, “
Astrochemistry as a tool to follow protostellar evolution: The class I stage
,”
ACS Earth Space Chem.
3
,
2659
2674
(
2019
).
45.
R.
Martín-Doménech
,
I.
Jiménez-Serra
,
G. M.
Muñoz Caro
,
H. S. P.
Müller
,
A.
Occhiogrosso
,
L.
Testi
,
P. M.
Woods
, and
S.
Viti
, “
The sulfur depletion problem: Upper limits on the H2S2, HS2, and S2 gas-phase abundances toward the low-mass warm core IRAS 16293-2422
,”
Astron. Astrophys.
585
,
A112
(
2016
).
46.
C. Z.
Palmer
,
R. C.
Fortenberry
, and
J. S.
Francisco
, “
Spectral signatures of hydrogen thioperoxide (HOSH) and hydrogen persulfide (HSSH): Possible molecular sulfur sinks in the dense ISM
,”
Molecules
27
,
3200
(
2022
).
47.
D. E.
Anderson
,
E. A.
Bergin
,
S.
Maret
, and
V.
Wakelam
, “
New constraints on the sulfur reservoir in the dense interstellar medium provided by spitzer observations of S I in shocked gas
,”
Astrophys. J.
779
,
141
(
2013
).
48.
A. G. G. M.
Tielens
, “
The molecular universe
,”
Rev. Mod. Phys.
85
,
1021
1081
(
2013
).
49.
S.
Yamamoto
,
Introduction to Astrochemistry (Chemical Evolution from Interstellar Clouds to Star and Planet Formation)
(
Springer
,
2017
).
50.
E.
Herbst
, “
Unusual chemical processes in interstellar chemistry: Past and present
,”
Front. Astron. Space Sci.
8
,
776942
(
2021
).
51.
R. E.
Hillger
and
M. W. P.
Strandberg
, “
Centrifugal distortion in asymmetric molecules. II. HDS
,”
Phys. Rev.
83
,
575
(
1951
).
52.
P.
Thaddeus
,
L. C.
Krisher
, and
J. H. N.
Loubser
, “
Hyperfine structure in the microwave spectrum of HDO, HDS, CH2O, and CHDO: Beam-maser spectroscopy on asymmetric-top molecules
,”
J. Chem. Phys.
40
,
257
273
(
1964
).
53.
P.
Helminger
,
R. L.
Cook
, and
F. C.
De Lucia
, “
Microwave spectrum and centrifugal distortion effects of HDS
,”
J. Mol. Spectrosc.
40
,
125
136
(
1971
).
54.
F. J.
Lovas
, “
Microwave spectral tables II. Triatomic molecules
,”
J. Phys. Chem. Ref. Data
7
,
1445
1750
(
1978
).
55.
C.
Camy-Peyret
,
J.-M.
Flaud
,
L.
Lechuga-Fossat
, and
J. W. C.
Johns
, “
The far-infrared spectrum of deuterated hydrogen sulfide: The ground state rotational constants of DS232, DS234, HD32S, and HD34S
,”
J. Mol. Spectrosc.
109
,
300
333
(
1985
).
56.
O. N.
Ulenikov
,
R. N.
Tolchenov
,
E. N.
Melekhina
,
M.
Koivusaari
,
S.
Alanko
, and
R.
Anttila
, “
High resolution study of deuterated hydrogen sulfide in the region 2400–3000 cm−1
,”
J. Mol. Spectrosc.
170
,
397
416
(
1995
).
57.
C.
Sydow
,
O. N.
Ulenikov
,
E. S.
Bekhtereva
,
O. V.
Gromova
,
Z.
Xintong
,
P. A.
Glushkov
,
C.
Maul
, and
S.
Bauerecker
, “
Extended analysis of FTIR high resolution spectra of HD32S and HD34S in the region of the ν2 band: Positions and strengths of individual lines
,”
J. Quant. Spectrosc. Radiat. Transfer
225
,
286
300
(
2019
).
58.
O. N.
Ulenikov
,
E. S.
Bekhtereva
,
O. V.
Gromova
,
N. I.
Raspopova
,
C.
Sydow
, and
S.
Bauerecker
, “
Extended analysis of the ν3 band of HD32S: Line positions, energies, and line strengths
,”
J. Quant. Spectrosc. Radiat. Transfer
230
,
131
141
(
2019
).
59.
O. N.
Ulenikov
,
A.-W.
Liu
,
E. S.
Bekhtereva
,
G. A.
Onopenko
,
O. V.
Gromova
,
L.
Wan
,
S.-M.
Hu
, and
J.-M.
Flaud
, “
Joint ro-vibrational analysis of the HDS high resolution infrared data
,”
J. Mol. Spectrosc.
240
,
32
44
(
2006
).
60.
A.-W.
Liu
,
B.
Gao
,
G.-S.
Cheng
,
F.
Qi
, and
S.-M.
Hu
, “
High-resolution rotational analysis of HDS: 2ν3, ν2+ 2ν3, 3ν3, and ν2+3 bands
,”
J. Mol. Spectrosc.
232
,
279
290
(
2005
).
61.
O. N.
Ulenikov
,
R. N.
Tolchenov
,
M.
Koivusaari
,
S.
Alanko
, and
R.
Antilla
, “
Study of the fine rotational structure of the ν2 band of HDS
,”
J. Mol. Spectrosc.
170
,
1
9
(
1995
).
62.
V. G.
Tyuterev
,
L.
Régalia-Jarlot
,
D. W.
Schwenke
,
S. A.
Tashkun
, and
Y. G.
Borkov
, “
Global variational calculations of high-resolution rovibrational spectra: Isotopic effects, intensity anomalies and experimental confirmations for H2S, HDS, D2S molecules
,”
C. R. Phys.
5
,
189
199
(
2004
).
63.
O. N.
Ulenikov
,
G. A.
Onopenko
,
I. M.
Olekhnovitch
,
S.
Alanko
,
V.-M.
Horneman
,
M.
Koivusaari
, and
R.
Anttila
, “
High-resolution Fourier transform spectra of hds in the regions of the bands ν1 and 2ν1/ν2+ ν3
,”
J. Mol. Spectrosc.
189
,
74
82
(
1998
).
64.
O. N.
Ulenikov
,
E. A.
Ditenberg
,
I. M.
Olekhnovitch
,
S.
Alanko
,
M.
Koivusaari
, and
R.
Anttila
, “
Isotope substitution in near local mode molecules: Bending overtones nν2 (n = 2, 3) of the HDS molecule
,”
J. Mol. Spectrosc.
191
,
239
247
(
1998
).
65.
T.
Furtenbacher
,
A. G.
Császár
, and
J.
Tennyson
, “
MARVEL: Measured active rotational–vibrational energy levels
,”
J. Mol. Spectrosc.
245
,
115
125
(
2007
).
66.
P.
Pyykkö
, “
Year-2008 nuclear quadrupole moments
,”
Mol. Phys.
106
,
1965
1974
(
2008
).
67.
J.
Gauss
,
K.
Ruud
, and
T.
Helgaker
, “
Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors
,”
J. Chem. Phys.
105
,
2804
(
1996
).
68.
J.
Gauss
and
D.
Sundholm
, “
Coupled-cluster calculations of spin-rotation constants
,”
Mol. Phys.
91
,
449
458
(
1997
).
69.
C.
Puzzarini
, “
Ab initio characterization of XH3 (X = N,P). Part II. Electric, magnetic and spectroscopic properties of ammonia and phosphine
,”
Theor. Chem. Acc.
121
,
1
10
(
2008
).
70.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
71.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
72.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
73.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
(
1992
).
74.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
,”
J. Chem. Phys.
103
,
4572
(
1995
).
75.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
, “
Accurate correlation consistent basis sets for molecular core-valence correlation effects: The second row atoms Al-Ar, and the first row atoms B-Ne revisited
,”
J. Chem. Phys.
117
,
10548
10560
(
2002
).
76.
I. M.
Mills
,
Molecular Spectroscopy: Modern Research
, edited by
K. N.
Rao
and
C. W.
Matthews
(
Academic Press, New York and London
,
1972
).
77.
A. A.
Auer
,
J.
Gauss
, and
J. F.
Stanton
, “
Quantitative prediction of gas-phase 13C nuclear magnetic shielding constants
,”
J. Chem. Phys.
118
,
10407
10417
(
2003
).
78.
D.
Feller
, “
The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water
,”
J. Chem. Phys.
98
,
7059
(
1993
).
79.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
, “
Basis-set convergence of correlated calculations on water
,”
J. Chem. Phys.
106
,
9639
(
1997
).
80.
J.
Noga
and
R. J.
Bartlett
, “
The full CCSDT model for molecular electronic structure
,”
J. Chem. Phys.
86
,
7041
7050
(
1987
).
81.
G. E.
Scuseria
and
H. F.
Schaefer
, “
A new implementation of the full CCSDT model for molecular electronic structure
,”
Chem. Phys. Lett.
152
,
382
386
(
1988
).
82.
S. A.
Kucharski
and
R. J.
Bartlett
, “
The coupled-cluster single, double, triple, and quadruple excitation method
,”
J. Chem. Phys.
97
,
4282
4288
(
1992
).
83.
M.
Kállay
and
P. R.
Surján
, “
Higher excitations in coupled-cluster theory
,”
J. Chem. Phys.
115
,
2945
2954
(
2001
).
84.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon
,”
J. Mol. Struct. THEOCHEM
388
,
339
349
(
1996
).
85.
T.
Van Mourik
,
A. K.
Wilson
, and
T. H.
Dunning
, Jr.
, “
Benchmark calculations with correlated molecular wavefunctions. XIII. Potential energy curves for He2, Ne2 and Ar2 using correlation consistent basis sets through augmented sextuple zeta
,”
Mol. Phys.
96
,
529
547
(
1999
).
86.
W.
Kutzelnigg
,
Relativistic Electronic Structure Theory. Part I. Fundamentals
, edited by
P.
Schwerdtfeger
(
Elsevier
,
Amsterdam
,
2002
).
87.
G.
Cazzoli
,
C.
Puzzarini
, and
J.
Gauss
, “
Rare isotopic species of hydrogen sulfide: The rotational spectrum of HS236
,”
Astron. Astrophys.
566
,
A52
(
2014
).
88.
J.
Gauss
and
J. F.
Stanton
,
Chem. Phys. Lett.
276
,
70
76
(
1997
).
89.
W.
Schneider
and
W.
Thiel
,
Chem. Phys. Lett.
157
,
367
373
(
1989
).
90.
J. F.
Stanton
,
C. L.
Lopreore
, and
J.
Gauss
,
J. Chem. Phys.
108
,
7190
7196
(
1998
).
91.
J. K. G.
Watson
, “
Aspects of quartic and sextic centrifugal effects on rotational energy levels
,” in
Vibrational Spectra and Structure
, edited by
J.
Durig
(
Elsevier
,
Amsterdam
,
1977
), Vol. 6, pp.
1
89
.
92.
J. F.
Stanton
,
J.
Gauss
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, CFOUR, coupled-cluster techniques for computational chemistry, a quantum-chemical program package with contributions from A. Asthana, A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, S. Blaschke, Y. J. Bomble, S. Burger, O. Christiansen, D. Datta, F. Engel, R. Faber, J. Greiner, M. Heckert, O. Heun, M. Hilgenberg, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, T. Kirsch, M.-P. Kitsaras, K. Klein, G.M. Kopper, W.J. Lauderdale, F. Lipparini, J. Liu, T. Metzroth, L.A. Mück, D.P. O’Neill, T. Nottoli, J. Oswald, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts, C. Zhang, X. Zheng, and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de.
93.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled-cluster techniques for computational chemistry: The CFOUR program package
,”
J. Chem. Phys.
152
,
214108
(
2020
).
94.
M.
Kállay
, MRCC, a generalized CC/CI program, For the current version, see http://www.mrcc.hu.
95.
M.
Kállay
,
P. R.
Nagy
,
D.
Mester
,
Z.
Rolik
,
G.
Samu
,
J.
Csontos
,
J.
Csóka
,
P. B.
Szabó
,
L.
Gyevi-Nagy
,
B.
Hégely
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
K.
Petrov
,
M.
Farkas
,
P. D.
Mezei
, and
Á.
Ganyecz
, “
The MRCC program system: Accurate quantum chemistry from water to proteins
,”
J. Chem. Phys.
152
,
074107
(
2020
).
96.
C.
Puzzarini
,
G.
Cazzoli
, and
J.
Gauss
, “
The rotational spectra of HD17O and DO217: Experiment and quantum-chemical calculations
,”
J. Chem. Phys.
137
,
154311
(
2012
).
97.
M.
Melosso
,
C.
Degli Esposti
, and
L.
Dore
, “
Terahertz spectroscopy and global analysis of the rotational spectrum of doubly deuterated amidogen radical ND2
,”
Astrophys. J., Suppl. Ser.
233
,
15
(
2017
).
98.
M.
Melosso
,
L.
Bizzocchi
,
F.
Tamassia
,
C.
Degli Esposti
,
E.
Canè
, and
L.
Dore
, “
The rotational spectrum of 15ND. Isotopic-independent Dunham-type analysis of the imidogen radical
,”
Phys. Chem. Chem. Phys.
21
,
3564
3573
(
2019
).
99.
G.
Cazzoli
and
C.
Puzzarini
, “
Sub-Doppler resolution in the THz frequency domain: 1 kHz accuracy at 1 THz by exploiting the lamb-dip technique
,”
J. Phys. Chem. A
117
,
13759
13766
(
2013
).
100.
W.
Gordy
and
R. L.
Cook
,
Microwave Molecular Spectra
(
Wiley
,
1984
).
101.
W. H.
Flygare
, “
Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters
,”
Chem. Rev.
74
,
653
687
(
1974
).
102.
C.
Puzzarini
, “
Rotational spectroscopy meets theory
,”
Phys. Chem. Chem. Phys.
15
,
6595
6607
(
2013
).
103.

J is the quantum number for the total angular momentum, while Ka and Kc are pseudo-quantum numbers associated to the projections of the angular moment along the a-axis and c-axis in the prolate- and oblate-top limits, respectively.

104.
R. S.
Winton
, “
Observations and applications of the lamb-dip in millimeter-wave molecular spectroscopy
,” Ph.D. dissertation,
Duke University
,
Durham
,
1972
.
105.
V. S.
Letokhov
and
V. P.
Chebotayev
,
Nonlinear Laser Spectroscopy
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1977
).
106.
G.
Cazzoli
and
C.
Puzzarini
, “
The Lamb-dip spectrum of the J + 1 ← J (J = 0, 1, 3 − 8) transitions of H13CN: The nuclear hyperfine structure due to H, 13C, and 14N
,”
J. Mol. Spectrosc.
233
,
280
289
(
2005
).
107.
L.
Dore
, “
Using Fast Fourier Transform to compute the line shape of frequency-modulated spectral profiles
,”
J. Mol. Spectrosc.
221
,
93
98
(
2003
).
108.
H. M.
Pickett
, “
The fitting and prediction of vibration-rotation spectra with spin interactions
,”
J. Mol. Spectrosc.
148
,
371
377
(
1991
).
109.
G.
Cazzoli
,
C.
Puzzarini
,
M. E.
Harding
, and
J.
Gauss
, “
The hyperfine structure in the rotational spectrum of water: Lamb-dip technique and quantum-chemical calculations
,”
Chem. Phys. Lett.
473
,
21
25
(
2009
).
110.
S.
Komorovsky
,
M.
Repisky
,
E.
Malkin
,
K.
Ruud
, and
J.
Gauss
, “
Communication: The absolute shielding scales of oxygen and sulfur revisited
,”
J. Chem. Phys.
142
,
091102
(
2015
).
111.
C.
Puzzarini
,
M.
Heckert
, and
J.
Gauss
, “
The accuracy of rotational constants predicted by high-level quantum-chemical calculations. I. Molecules containing first-row atoms
,”
J. Chem. Phys.
128
,
194108
(
2008
).
112.
T.
Furtenbacher
and
A. G.
Császár
, “
On employing HO216, HO217, HO218, and DO216 lines as frequency standards in the 15–170 cm−1 window
,”
J. Quant. Spectrosc. Radiat. Transfer
109
,
1234
1251
(
2008
).
113.
T.
Furtenbacher
and
A. G.
Császár
, “
The role of intensities in determining characteristics of spectroscopic networks
,”
J. Mol. Struct.
1009
,
123
129
(
2012
).
114.
T.
Furtenbacher
and
A. G.
Császár
, “
MARVEL: Measured active rotational–vibrational energy levels. II. Algorithmic improvements
,”
J. Quant. Spectrosc. Radiat. Transfer
113
,
929
935
(
2012
).
115.
T.
Furtenbacher
,
T.
Szidarovszky
,
E.
Mátyus
,
C.
Fábri
, and
A. G.
Császár
, “
Analysis of the rotational–vibrational states of the molecular ion H3+
,”
J. Chem. Theory Comput.
9
,
5471
5478
(
2013
).
116.
T.
Furtenbacher
,
T.
Szidarovszky
,
C.
Fábri
, and
A. G.
Császár
, “
MARVEL analysis of the rotational–vibrational states of the molecular ions H2D+ and D2H+
,”
Phys. Chem. Chem. Phys.
15
,
10181
10193
(
2013
).
117.
A. R.
Al Derzi
,
T.
Furtenbacher
,
J.
Tennyson
,
S. N.
Yurchenko
, and
A. G.
Császár
, “
MARVEL analysis of the measured high-resolution spectra of 14NH3
,”
J. Quant. Spectrosc. Radiat. Transfer
161
,
117
130
(
2015
).
118.
L. K.
McKemmish
,
T.
Masseron
,
S.
Sheppard
,
E.
Sandeman
,
Z.
Schofield
,
T.
Furtenbacher
,
A. G.
Császár
,
J.
Tennyson
, and
C.
Sousa-Silva
, “
MARVEL analysis of the measured high-resolution rovibronic spectra of 48Ti16O
,”
Astrophys. J., Suppl. Ser.
228
,
15
(
2017
).
119.
R.
Tóbiás
,
T.
Furtenbacher
,
A. G.
Császár
,
O. V.
Naumenko
,
J.
Tennyson
,
J.-M.
Flaud
,
P.
Kumar
, and
B.
Poirier
, “
Critical evaluation of measured rotational–vibrational transitions of four sulphur isotopologues of S16O2
,”
J. Quant. Spectrosc. Radiat. Transfer
208
,
152
163
(
2018
).
120.
A. R.
Al-Derzi
,
J.
Tennyson
,
S. N.
Yurchenko
,
M.
Melosso
,
N.
Jiang
,
C.
Puzzarini
,
L.
Dore
,
T.
Furtenbacher
,
R.
Tóbiás
, and
A. G.
Császár
, “
An improved rovibrational linelist of formaldehyde, HC212O16
,”
J. Quant. Spectrosc. Radiat. Transfer
266
,
107563
(
2021
).
121.
T. M.
Mellor
,
A.
Owens
,
J.
Tennyson
, and
S. N.
Yurchenko
, “
MARVEL analysis of high-resolution spectra of thioformaldehyde (H2CS)
,”
J. Mol. Spectrosc.
391
,
111732
(
2023
).
122.
A. A.
Azzam
,
J.
Tennyson
,
S. N.
Yurchenko
, and
O. V.
Naumenko
, “
ExoMol molecular line lists – XVI. The rotation–vibration spectrum of hot H2S
,”
Mon. Not. R. Astron. Soc.
460
,
4063
4074
(
2016
).
123.
I.
Gordon
,
L.
Rothman
,
R.
Hargreaves
,
R.
Hashemi
,
E.
Karlovets
,
F.
Skinner
,
E.
Conway
,
C.
Hill
,
R.
Kochanov
,
Y.
Tan
et al, “
The HITRAN2020 molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transfer
277
,
107949
(
2022
).

Supplementary Material

You do not currently have access to this content.