Complete active space second-order perturbation theory (CASPT2) is useful for accurately predicting properties of complex electronic structures, but it is well known that it systematically underestimates excitation energies. The underestimation can be corrected using the ionization potential–electron affinity (IPEA) shift. In this study, analytic first-order derivatives of CASPT2 with the IPEA shift are developed. CASPT2-IPEA is not invariant with respect to rotations among active molecular orbitals, and two additional constraint conditions are necessary in the CASPT2 Lagrangian to formulate analytic derivatives. The method developed here is applied to methylpyrimidine derivatives and cytosine, and minimum energy structures and conical intersections are located. By comparing energies relative to the closed-shell ground state, we find that the agreement with experiments and high-level calculations is indeed improved by the inclusion of the IPEA shift. The agreement of geometrical parameters with high-level calculations may also be improved in some cases.

1.
M.
Musiał
,
A.
Perera
, and
R. J.
Bartlett
, “
Multireference coupled-cluster theory: The easy way
,”
J. Chem. Phys.
134
,
114108
(
2011
).
2.
D. I.
Lyakh
,
M.
Musiał
,
V. F.
Lotrich
, and
R. J.
Bartlett
, “
Multireference nature of chemistry: The coupled-cluster view
,”
Chem. Rev.
112
,
182
243
(
2012
).
3.
A.
Köhn
,
M.
Hanauer
,
L. A.
Mück
,
T.-C.
Jagau
, and
J.
Gauss
, “
State-specific multireference coupled-cluster theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
176
197
(
2013
).
4.
P. G.
Szalay
,
T.
Müller
,
G.
Gidofalvi
,
H.
Lischka
, and
R.
Shepard
, “
Multiconfiguration self-consistent field and multireference configuration interaction methods and applications
,”
Chem. Rev.
112
,
108
181
(
2012
).
5.
J. W.
Park
,
R.
Al-Saadon
,
M. K.
MacLeod
,
T.
Shiozaki
, and
B.
Vlaisavljevich
, “
Multireference electron correlation methods: Journeys along potential energy surfaces
,”
Chem. Rev.
120
,
5878
5909
(
2020
).
6.
B. O.
Roos
,
P.
Linse
,
P. E. M.
Siegbahn
, and
M. R. A.
Blomberg
, “
A simple method for the evaluation of the second-order-perturbation energy from external double-excitations with a CASSCF reference wavefunction
,”
Chem. Phys.
66
,
197
207
(
1982
).
7.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
,
5483
5488
(
1990
).
8.
K.
Andersson
,
P.-Å.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
1226
(
1992
).
9.
A. A.
Granovsky
, “
Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory
,”
J. Chem. Phys.
134
,
214113
(
2011
).
10.
H.
Nakano
, “
Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions
,”
J. Chem. Phys.
99
,
7983
7992
(
1993
).
11.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
, “
Introduction of n-electron valence states for multireference perturbation theory
,”
J. Chem. Phys.
114
,
10252
10264
(
2001
).
12.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
, “
N-electron valence state perturbation theory: A fast implementation of the strongly contracted variant
,”
Chem. Phys. Lett.
350
,
297
305
(
2001
).
13.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
, “
n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants
,”
J. Chem. Phys.
117
,
9138
9153
(
2002
).
14.
Y. G.
Khait
,
J.
Song
, and
M. R.
Hoffmann
, “
Explication and revision of generalized Van Vleck perturbation theory for molecular electronic structure
,”
J. Chem. Phys.
117
,
4133
4145
(
2002
).
15.
R. F.
Fink
, “
Two new unitary-invariant and size-consistent perturbation theoretical approaches to the electron correlation energy
,”
Chem. Phys. Lett.
428
,
461
466
(
2006
).
16.
A.
Sen
,
S.
Sen
,
P. K.
Samanta
, and
D.
Mukherjee
, “
Unitary group adapted state specific multireference perturbation theory: Formulation and pilot applications
,”
J. Comput. Chem.
36
,
670
688
(
2015
).
17.
E.
Giner
,
C.
Angeli
,
Y.
Garniron
,
A.
Scemama
, and
J.-P.
Malrieu
, “
A Jeziorski–Monkhorst fully uncontracted multi-reference perturbative treatment. I. Principles, second-order versions, and tests on ground state potential energy curves
,”
J. Chem. Phys.
146
,
224108
(
2017
).
18.
C.
Li
and
F. A.
Evangelista
, “
Driven similarity renormalization group for excited states: A state-averaged perturbation theory
,”
J. Chem. Phys.
148
,
124106
(
2018
).
19.
P.
Celani
and
H.-J.
Werner
, “
Analytical energy gradients for internally contracted second-order multireference perturbation theory
,”
J. Chem. Phys.
119
,
5044
5057
(
2003
).
20.
T. J.
Dudley
,
Y. G.
Khait
, and
M. R.
Hoffmann
, “
Molecular gradients for the second-order generalized Van Vleck variant of multireference perturbation theory
,”
J. Chem. Phys.
119
,
651
660
(
2003
).
21.
M. K.
MacLeod
and
T.
Shiozaki
, “
Communication: Automatic code generation enables nuclear gradient computations for fully internally contracted multireference theory
,”
J. Chem. Phys.
142
,
051103
(
2015
).
22.
T.
Mori
and
S.
Kato
, “
Dynamic electron correlation effect on conical intersections in photochemical ring-opening reaction of cyclohexadiene: MS-CASPT2 study
,”
Chem. Phys. Lett.
476
,
97
100
(
2009
).
23.
C.
Song
,
J. B.
Neaton
, and
T. J.
Martínez
, “
Reduced scaling formulation of CASPT2 analytical gradients using the supporting subspace method
,”
J. Chem. Phys.
154
,
014103
(
2021
).
24.
Y.
Nishimoto
, “
Analytic gradients for restricted active space second-order perturbation theory (RASPT2)
,”
J. Chem. Phys.
154
,
194103
(
2021
).
25.
D.
Theis
,
Y. G.
Khait
, and
M. R.
Hoffmann
, “
GVVPT2 energy gradient using a Lagrangian formulation
,”
J. Chem. Phys.
135
,
044117
(
2011
).
26.
Y.
Nishimoto
, “
Analytic first-order derivatives of partially contracted n-electron valence state second-order perturbation theory (PC-NEVPT2)
,”
J. Chem. Phys.
151
,
114103
(
2019
).
27.
J. W.
Park
, “
Analytical gradient theory for strongly contracted (SC) and partially contracted (PC) n-electron valence state perturbation theory (NEVPT2)
,”
J. Chem. Theory Comput.
15
,
5417
5425
(
2019
).
28.
J. W.
Park
, “
Analytical first-order derivatives of second-order extended multiconfiguration quasi-degenerate perturbation theory (XMCQDPT2): Implementation and application
,”
J. Chem. Theory Comput.
16
,
5562
5571
(
2020
).
29.
S.
Wang
,
C.
Li
, and
F. A.
Evangelista
, “
Analytic energy gradients for the driven similarity renormalization group multireference second-order perturbation theory
,”
J. Chem. Theory Comput.
17
,
7666
7681
(
2021
).
30.
J. W.
Park
, “
Analytical gradient theory for spin-free state-averaged second-order driven similarity renormalization group perturbation theory (SA-DSRG-MRPT2) and its applications for conical intersection optimizations
,”
J. Chem. Theory Comput.
18
,
2233
2245
(
2022
).
31.
J. W.
Park
and
T.
Shiozaki
, “
Analytical derivative coupling for multistate CASPT2 theory
,”
J. Chem. Theory Comput.
13
,
2561
2570
(
2017
).
32.
J. W.
Park
, “
Single-state single-reference and multistate multireference zeroth-order Hamiltonians in MS-CASPT2 and conical intersections
,”
J. Chem. Theory Comput.
15
,
3960
3973
(
2019
).
33.
J. W.
Park
, “
Analytical gradient theory for quasidegenerate N-electron valence state perturbation theory (QD-NEVPT2)
,”
J. Chem. Theory Comput.
16
,
326
339
(
2020
).
34.
Y.
Nishimoto
, “
Locating conical intersections using the quasidegenerate partially and strongly contracted NEVPT2 methods
,”
Chem. Phys. Lett.
744
,
137219
(
2020
).
35.
J. W.
Park
, “
Analytical gradient theory for resolvent-fitted second-order extended multiconfiguration perturbation theory (XMCQDPT2)
,”
J. Chem. Theory Comput.
17
,
6122
6133
(
2021
).
36.
Y.
Nishimoto
,
S.
Battaglia
, and
R.
Lindh
, “
Analytic first-order derivatives of (X)MS, XDW, and RMS variants of the CASPT2 and RASPT2 methods
,”
J. Chem. Theory Comput.
18
,
4269
4281
(
2022
).
37.
J. W.
Park
and
T.
Shiozaki
, “
On-the-fly CASPT2 surface-hopping dynamics
,”
J. Chem. Theory Comput.
13
,
3676
3683
(
2017
).
38.
K.
Andersson
and
B. O.
Roos
, “
Multiconfigurational second-order perturbation theory: A test of geometries and binding energies
,”
Int. J. Quantum Chem.
45
,
591
607
(
1993
).
39.
G.
Ghigo
,
B. O.
Roos
, and
P.-Å.
Malmqvist
, “
A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2)
,”
Chem. Phys. Lett.
396
,
142
149
(
2004
).
40.
I.
Schapiro
,
K.
Sivalingam
, and
F.
Neese
, “
Assessment of n-electron valence state perturbation theory for vertical excitation energies
,”
J. Chem. Theory Comput.
9
,
3567
3580
(
2013
).
41.
R.
Sarkar
,
P.-F.
Loos
,
M.
Boggio-Pasqua
, and
D.
Jacquemin
, “
Assessing the performances of CASPT2 and NEVPT2 for vertical excitation energies
,”
J. Chem. Theory Comput.
18
,
2418
2436
(
2022
).
42.
F.
Ruipérez
,
F.
Aquilante
,
J. M.
Ugalde
, and
I.
Infante
, “
Complete vs restricted active space perturbation theory calculation of the Cr2 potential energy surface
,”
J. Chem. Theory Comput.
7
,
1640
1646
(
2011
).
43.
T.
Shiozaki
and
B.
Vlaisavljevich
, “
Computational spectroscopy of the Cr–Cr bond in coordination complexes
,”
Inorg. Chem.
60
,
19219
19225
(
2021
).
44.
M.
Kepenekian
,
V.
Robert
, and
B.
Le Guennic
, “
What zeroth-order Hamiltonian for CASPT2 adiabatic energetics of Fe(II)N6 architectures?
,”
J. Chem. Phys.
131
,
114702
(
2009
).
45.
S.
Vela
,
M.
Fumanal
,
J.
Ribas-Ariño
, and
V.
Robert
, “
On the zeroth-order Hamiltonian for CASPT2 calculations of spin crossover compounds
,”
J. Comput. Chem.
37
,
947
953
(
2016
).
46.
P. A.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
, “
The restricted active space self-consistent-field method, implemented with a split graph unitary group approach
,”
J. Phys. Chem.
94
,
5477
5482
(
1990
).
47.
P.
Celani
and
H.-J.
Werner
, “
Multireference perturbation theory for large restricted and selected active space reference wave functions
,”
J. Chem. Phys.
112
,
5546
5557
(
2000
).
48.
P. Å.
Malmqvist
,
K.
Pierloot
,
A. R. M.
Shahi
,
C. J.
Cramer
, and
L.
Gagliardi
, “
The restricted active space followed by second-order perturbation theory method: Theory and application to the study of CuO2 and Cu2O2 systems
,”
J. Chem. Phys.
128
,
204109
(
2008
).
49.
S.
Gozem
,
F.
Melaccio
,
A.
Valentini
,
M.
Filatov
,
M.
Huix-Rotllant
,
N.
Ferré
,
L. M.
Frutos
,
C.
Angeli
,
A. I.
Krylov
,
A. A.
Granovsky
,
R.
Lindh
, and
M.
Olivucci
, “
Shape of multireference, equation-of-motion coupled-cluster, and density functional theory potential energy surfaces at a conical intersection
,”
J. Chem. Theory Comput.
10
,
3074
3084
(
2014
).
50.
S.
Battaglia
and
R.
Lindh
, “
On the role of symmetry in XDW-CASPT2
,”
J. Chem. Phys.
154
,
034102
(
2021
).
51.
T.
Shiozaki
,
W.
Győrffy
,
P.
Celani
, and
H.-J.
Werner
, “
Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients
,”
J. Chem. Phys.
135
,
081106
(
2011
).
52.
S.
Battaglia
and
R.
Lindh
, “
Extended dynamically weighted CASPT2: The best of two worlds
,”
J. Chem. Theory Comput.
16
,
1555
1567
(
2020
).
53.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
, “
The multi-state CASPT2 method
,”
Chem. Phys. Lett.
288
,
299
306
(
1998
).
54.
B. O.
Roos
and
K.
Andersson
, “
Multiconfigurational perturbation theory with level shift—The Cr2 potential revisited
,”
Chem. Phys. Lett.
245
,
215
223
(
1995
).
55.
N.
Forsberg
and
P.-Å.
Malmqvist
, “
Multiconfiguration perturbation theory with imaginary level shift
,”
Chem. Phys. Lett.
274
,
196
204
(
1997
).
56.
S.
Battaglia
,
L.
Fransén
,
I.
Fdez Galván
, and
R.
Lindh
, “
Regularized CASPT2: An intruder-state-free approach
,”
J. Chem. Theory Comput.
18
,
4814
4825
(
2022
).
57.
J. P.
Zobel
,
J. J.
Nogueira
, and
L.
González
, “
The IPEA dilemma in CASPT2
,”
Chem. Sci.
8
,
1482
1499
(
2017
).
58.
R.
Moccia
, “
Variable bases in SCF MO calculations
,”
Chem. Phys. Lett.
5
,
260
264
(
1970
).
59.
N. C.
Handy
,
R. D.
Amos
,
J. F.
Gaw
,
J. E.
Rice
, and
E. D.
Simandiras
, “
The elimination of singularities in derivative calculations
,”
Chem. Phys. Lett.
120
,
151
158
(
1985
).
60.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Macmillan Publishing Co., Inc.
,
New York
,
1982
).
61.
I.
Mayer
,
Simple Theorems, Proofs, and Derivations in Quantum Chemistry
(
Springer
,
New York
,
2003
).
62.
T.
Helgaker
and
P.
Jørgensen
, “
Configuration-interaction energy derivatives in a fully variational formulation
,”
Theor. Chem. Acc.
75
,
111
127
(
1989
).
63.
N. C.
Handy
and
H. F.
Schaefer
III
, “
On the evaluation of analytic energy derivatives for correlated wave functions
,”
J. Chem. Phys.
81
,
5031
5033
(
1984
).
64.
J.
Stålring
,
A.
Bernhardsson
, and
R.
Lindh
, “
Analytical gradients of a state average MCSCF state and a state average diagnostic
,”
Mol. Phys.
99
,
103
114
(
2001
).
65.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
, “
Recent advances in wave function-based methods of molecular-property calculations
,”
Chem. Rev.
112
,
543
631
(
2012
).
66.
A.
El Azhary
,
G.
Rauhut
,
P.
Pulay
, and
H.-J.
Werner
, “
Analytical energy gradients for local second-order Møller–Plesset perturbation theory
,”
J. Chem. Phys.
108
,
5185
5193
(
1998
).
67.
M.
Schütz
,
H.-J.
Werner
,
R.
Lindh
, and
F. R.
Manby
, “
Analytical energy gradients for local second-order Møller–Plesset perturbation theory using density fitting approximations
,”
J. Chem. Phys.
121
,
737
750
(
2004
).
68.
P.
Pulay
, “
Analytical derivatives, forces, force constants, molecular geometries, and related response properties in electronic structure theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
169
181
(
2014
).
69.
L.
Joubert-Doriol
, “
Variational approach for linearly dependent moving bases in quantum dynamics: Application to Gaussian functions
,”
J. Chem. Theory Comput.
18
,
5799
5809
(
2022
).
70.
K. L.
Bak
,
J.
Boatz
, and
J.
Simons
, “
First-order geometrical response equations for state-averaged multiconfigurational self-consistent field (SA-MCSCF) wave functions
,”
Int. J. Quantum Chem.
40
,
361
378
(
1991
).
71.
B.
Vlaisavljevich
and
T.
Shiozaki
, “
Nuclear energy gradients for internally contracted complete active space second-order perturbation theory: Multistate extensions
,”
J. Chem. Theory Comput.
12
,
3781
3787
(
2016
).
72.
Molecular Electronic-Structure Theory
, edited by
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
(
John Wiley & Sons, Ltd.
,
England
,
2000
).
73.
I.
Fdez Galván
,
M.
Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
,
N. A.
Bogdanov
,
R. K.
Carlson
,
L. F.
Chibotaru
,
J.
Creutzberg
,
N.
Dattani
,
M. G.
Delcey
,
S. S.
Dong
,
A.
Dreuw
,
L.
Freitag
,
L. M.
Frutos
,
L.
Gagliardi
,
F.
Gendron
,
A.
Giussani
,
L.
González
,
G.
Grell
,
M.
Guo
,
C. E.
Hoyer
,
M.
Johansson
,
S.
Keller
,
S.
Knecht
,
G.
Kovačević
,
E.
Källman
,
G.
Li Manni
,
M.
Lundberg
,
Y.
Ma
,
S.
Mai
,
J. P.
Malhado
,
P. Å.
Malmqvist
,
P.
Marquetand
,
S. A.
Mewes
,
J.
Norell
,
M.
Olivucci
,
M.
Oppel
,
Q. M.
Phung
,
K.
Pierloot
,
F.
Plasser
,
M.
Reiher
,
A. M.
Sand
,
I.
Schapiro
,
P.
Sharma
,
C. J.
Stein
,
L. K.
Sørensen
,
D. G.
Truhlar
,
M.
Ugandi
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
O.
Weser
,
T. A.
Wesołowski
,
P.-O.
Widmark
,
S.
Wouters
,
A.
Zech
,
J. P.
Zobel
, and
R.
Lindh
, “
OpenMolcas: From source code to insight
,”
J. Chem. Theory Comput.
15
,
5925
5964
(
2019
).
74.
F.
Aquilante
,
J.
Autschbach
,
A.
Baiardi
,
S.
Battaglia
,
V. A.
Borin
,
L. F.
Chibotaru
,
I.
Conti
,
L.
De Vico
,
M.
Delcey
,
I.
Fdez Galván
,
N.
Ferré
,
L.
Freitag
,
M.
Garavelli
,
X.
Gong
,
S.
Knecht
,
E. D.
Larsson
,
R.
Lindh
,
M.
Lundberg
,
P. Å.
Malmqvist
,
A.
Nenov
,
J.
Norell
,
M.
Odelius
,
M.
Olivucci
,
T. B.
Pedersen
,
L.
Pedraza-González
,
Q. M.
Phung
,
K.
Pierloot
,
M.
Reiher
,
I.
Schapiro
,
J.
Segarra-Martí
,
F.
Segatta
,
L.
Seijo
,
S.
Sen
,
D.-C.
Sergentu
,
C. J.
Stein
,
L.
Ungur
,
M.
Vacher
,
A.
Valentini
, and
V.
Veryazov
, “
Modern quantum chemistry with [Open]Molcas
,”
J. Chem. Phys.
152
,
214117
(
2020
).
75.
F.
Aquilante
,
R.
Lindh
, and
T.
Bondo Pedersen
, “
Unbiased auxiliary basis sets for accurate two-electron integral approximations
,”
J. Chem. Phys.
127
,
114107
(
2007
).
76.
F.
Aquilante
,
L.
Gagliardi
,
T. B.
Pedersen
, and
R.
Lindh
, “
Atomic Cholesky decompositions: A route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency
,”
J. Chem. Phys.
130
,
154107
(
2009
).
77.
I.
Fdez Galván
,
M. G.
Delcey
,
T. B.
Pedersen
,
F.
Aquilante
, and
R.
Lindh
, “
Analytical state-average complete-active-space self-consistent field nonadiabatic coupling vectors: Implementation with density-fitted two-electron integrals and application to conical intersections
,”
J. Chem. Theory Comput.
12
,
3636
3653
(
2016
).
78.
K. A.
Kistler
and
S.
Matsika
, “
Radiationless decay mechanism of cytosine: An ab initio study with comparisons to the fluorescent analogue 5-methyl-2-pyrimidinone
,”
J. Phys. Chem. A
111
,
2650
2661
(
2007
).
79.
Y. A.
Aoto
,
A.
Bargholz
,
D.
Kats
,
H.-J.
Werner
, and
A.
Köhn
, “
Perturbation expansion of internally contracted coupled-cluster theory up to third order
,”
J. Chem. Theory Comput.
15
,
2291
2305
(
2019
).
80.
L.
Alvarez-Valtierra
,
X.-Q.
Tan
, and
D. W.
Pratt
, “
On the role of methyl torsional modes in the intersystem crossing dynamics of isolated molecules
,”
J. Phys. Chem. A
111
,
12802
12809
(
2007
).
81.
R. E.
Bandy
,
J.
Nash
, and
T. S.
Zwier
, “
The spectroscopic and photophysical effects of the position of methyl substitution. I. 4- and 5-methylpyrimidine
,”
J. Chem. Phys.
95
,
2317
2335
(
1991
).
82.
M. P.
Fuelscher
and
B. O.
Roos
, “
Theoretical study of the electronic spectrum of cytosine
,”
J. Am. Chem. Soc.
117
,
2089
2095
(
1995
).
83.
F.
Žaloudek
,
J. S.
Novros
, and
L. B.
Clark
, “
The electronic spectrum of cytosine
,”
J. Am. Chem. Soc.
107
,
7344
7351
(
1985
).

Supplementary Material

You do not currently have access to this content.