We use the modified Bigeleisen–Mayer equation to compute kinetic isotope effect values for non-enzymatic phosphoryl transfer reactions from classical and path integral molecular dynamics umbrella sampling. The modified form of the Bigeleisen–Mayer equation consists of a ratio of imaginary mode vibrational frequencies and a contribution arising from the isotopic substitution’s effect on the activation free energy, which can be computed from path integral simulation. In the present study, we describe a practical method for estimating the frequency ratio correction directly from umbrella sampling in a manner that does not require normal mode analysis of many geometry optimized structures. Instead, the method relates the frequency ratio to the change in the mass weighted coordinate representation of the minimum free energy path at the transition state induced by isotopic substitution. The method is applied to the calculation of 16/18O and 32/34S primary kinetic isotope effect values for six non-enzymatic phosphoryl transfer reactions. We demonstrate that the results are consistent with the analysis of geometry optimized transition state ensembles using the traditional Bigeleisen–Mayer equation. The method thus presents a new practical tool to enable facile calculation of kinetic isotope effect values for complex chemical reactions in the condensed phase.

1.
M.
Garcia-Viloca
,
J.
Gao
,
M.
Karplus
, and
D. G.
Truhlar
, “
How enzymes work: Analysis by modern rate theory and computer simulations
,”
Science
303
,
186
195
(
2004
).
2.
A.
Ganguly
,
B. P.
Weissman
,
T. J.
Giese
,
N.-S.
Li
,
S.
Hoshika
,
S.
Rao
,
S. A.
Benner
,
J. A.
Piccirilli
, and
D. M.
York
, “
Confluence of theory and experiment reveals the catalytic mechanism of the Varkud satellite ribozyme
,”
Nat. Chem.
12
,
193
201
(
2020
).
3.
C. S.
Gaines
,
J. A.
Piccirilli
, and
D. M.
York
, “
The L-platform/L-scaffold framework: A blueprint for RNA-cleaving nucleic acid enzyme design
,”
RNA
26
,
111
125
(
2020
).
4.
A. C.
Hengge
, “
Isotope effects in the study of phosphoryl and sulfuryl transfer reactions
,”
Acc. Chem. Res.
35
,
105
112
(
2002
).
5.
P.
Paneth
, “
Chlorine kinetic isotope effects on enzymatic dehalogenations
,”
Acc. Chem. Res.
36
,
120
126
(
2003
).
6.
W. W.
Cleland
, “
The use of isotope effects to determine enzyme mechanisms
,”
Arch. Biochem. Biophys.
433
,
2
12
(
2005
).
7.
B.
Weissman
,
Ş.
Ekesan
,
H.-C.
Lin
,
S.
Gardezi
,
N.-S.
Li
,
T. J.
Giese
,
E.
McCarthy
,
M. E.
Harris
,
D. M.
York
, and
J. A.
Piccirilli
, “
Dissociative transition state in hepatitis delta virus ribozyme catalysis
,”
J. Am. Chem. Soc.
145
,
2830
2839
(
2023
).
8.
J.
Bigeleisen
and
M.
Wolfsberg
, “
Theoretical and experimental aspects of isotope effects in chemical kinetics
,”
Adv. Chem. Phys.
1
,
15
76
(
1958
).
9.
W.-P.
Hu
and
D. G.
Truhlar
, “
Deuterium kinetic isotope effects and their temperature dependence in the gas-phase SN2 reactions X + CH3Y → CH3 + Y (X, Y = Cl, Br, I)
,”
J. Am. Chem. Soc.
117
,
10726
10734
(
1995
).
10.
A.
Fernández-Ramos
,
J. A.
Miller
,
S. J.
Klippenstein
, and
D. G.
Truhlar
, “
Modeling the kinetics of biomolecular reactions
,”
Chem. Rev.
106
,
4518
4584
(
2006
).
11.
T.
Yu
,
J.
Zheng
, and
D. G.
Truhlar
, “
Multi-structural variational transition state theory. Kinetics of the 1,4-hydrogen shift isomerization of the pentyl radical with torsional anharmonicity
,”
Chem. Sci.
2
,
2199
(
2011
).
12.
T. J.
Giese
,
Ş.
Ekesan
, and
D. M.
York
, “
Extension of the variational free energy profile and multistate Bennett acceptance ratio methods for high-dimensional potential of mean force profile analysis
,”
J. Phys. Chem. A
125
,
4216
4232
(
2021
).
13.
T. D.
Poulsen
,
M.
Garcia-Viloca
,
J.
Gao
, and
D. G.
Truhlar
, “
Free energy surface, reaction paths, and kinetic isotope effect of short-chain acyl-CoA dehydrogenase
,”
J. Phys. Chem. B
107
,
9567
9578
(
2003
).
14.
T. J.
Giese
,
J.
Zeng
,
Ş.
Ekesan
, and
D. M.
York
, “
Combined QM/MM, machine learning path integral approach to compute free energy profiles and kinetic isotope effects in RNA cleavage reactions
,”
J. Chem. Theory Comput.
18
,
4304
4317
(
2022
).
15.
J.
Gao
, “
Chapter fourteen—Enzymatic kinetic isotope effects from path-integral free energy perturbation theory
,”
Methods Enzymol.
577
,
359
388
(
2016
).
16.
A.
Vardi-Kilshtain
,
N.
Nitoker
, and
D. T.
Major
, “
Nuclear quantum effects and kinetic isotope effects in enzyme reactions
,”
Arch. Biochem. Biophys.
582
,
18
27
(
2015
).
17.
J. K.
Hwang
,
Z. T.
Chu
,
A.
Yadav
, and
A.
Warshel
, “
Simulations of quantum mechanical corrections for rate constants of hydride-transfer reactions in enzymes and solutions
,”
J. Phys. Chem.
95
,
8445
8448
(
1991
).
18.
J. K.
Hwang
and
A.
Warshel
, “
A quantized classical path approach for calculations of quantum mechanical rate constants
,”
J. Phys. Chem.
97
,
10053
10058
(
1993
).
19.
J.-K.
Hwang
and
A.
Warshel
, “
How important are quantum mechanical nuclear motions in enzyme catalysis?
,”
J. Am. Chem. Soc.
118
,
11745
11751
(
1996
).
20.
K.-Y.
Wong
,
J. P.
Richard
, and
J.
Gao
, “
Theoretical analysis of kinetic isotope effects on proton transfer reactions between substituted α-methoxystyrenes and substituted acetic acids
,”
J. Am. Chem. Soc.
131
,
13963
13971
(
2009
).
21.
K.-Y.
Wong
,
Y.
Xu
, and
L.
Xu
, “
Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman’s path integral
,”
Biochim. Biophys. Acta
1854
,
1782
1794
(
2015
).
22.
K.-Y.
Wong
,
Y.
Xu
, and
D. M.
York
, “
Ab initio path-integral calculations of kinetic and equilibrium isotope effects on base-catalyzed RNA transphosphorylation models
,”
J. Comput. Chem.
35
,
1302
1316
(
2014
).
23.
H.
Gu
,
S.
Zhang
,
K.-Y.
Wong
,
B. K.
Radak
,
T.
Dissanayake
,
D. L.
Kellerman
,
Q.
Dai
,
M.
Miyagi
,
V. E.
Anderson
,
D. M.
York
,
J. A.
Piccirilli
, and
M. E.
Harris
, “
Experimental and computational analysis of the transition state for ribonuclease A-catalyzed RNA 2′-O-transphosphorylation
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
13002
13007
(
2013
).
24.
À.
González-Lafont
and
J. M.
Lluch
, “
Kinetic isotope effects in chemical and biochemical reactions: Physical basis and theoretical methods of calculation
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
584
603
(
2016
).
25.
O.
Redlich
, “
Eine allgemeine beziehung zwischen den schwingungsfrequenzen isotoper molekeln
,”
Z. Phys. Chem.
28B
,
371
382
(
1935
).
26.
W. R.
Angus
,
C. R.
Bailey
,
C. K.
Ingold
,
A. H.
Leckie
,
C. G.
Raisin
,
J. W.
Thompson
, and
C. L.
Wilson
, “
Infra-red spectrum of hexadeuterobenzene and the structure of benzene
,”
Nature
136
,
680
(
1935
).
27.
W. R.
Angus
,
A. H.
Leckie
,
C. R.
Bailey
,
C. G.
Raisin
,
J. L.
Gleave
,
C. L.
Wilson
, and
C. K.
Ingold
, “
Raman spectra of deuterobenzenes and the structure of benzene
,”
Nature
135
,
1033
1034
(
1935
).
28.
M.
Ceriotti
and
T. E.
Markland
, “
Efficient methods and practical guidelines for simulating isotope effects
,”
J. Chem. Phys.
138
,
014112
(
2013
).
29.
D. T.
Major
and
J.
Gao
, “
An integrated path integral and free-energy perturbation-umbrella sampling method for computing kinetic isotope effects of chemical reactions in solution and in enzymes
,”
J. Chem. Theory Comput.
3
,
949
960
(
2007
).
30.
J.
Gao
, “
Computation of kinetic isotope effects for enzymatic reactions
,”
Sci. China. Chem.
54
,
1841
1850
(
2011
).
31.
Y.
Fan
,
A.
Cembran
,
S.
Ma
, and
J.
Gao
, “
Connecting protein conformational dynamics with catalytic function as illustrated in dihydrofolate reductase
,”
Biochemistry
52
,
2036
2049
(
2013
).
32.
K.-Y.
Wong
,
H.
Gu
,
S.
Zhang
,
J. A.
Piccirilli
,
M. E.
Harris
, and
D. M.
York
, “
Characterization of the reaction path and transition states for RNA transphosphorylation models from theory and experiment
,”
Angew. Chem., Int. Ed.
51
,
647
651
(
2012
).
33.
P.
Paneth
and
A.
Dybala-Defratyka
, “
Isotope effects as analytical probes: Applications of computational theory
,” in
Computational Techniques for Analytical Chemistry and Bioanalysis
(
The Royal Society of Chemistry
,
2020
).
34.
J.
Bigeleisen
and
M. G.
Mayer
, “
Calculation of equilibrium constants for isotopic exchange reactions
,”
J. Chem. Phys.
15
,
261
267
(
1947
).
35.
V.
López-Canut
,
J.
Ruiz-Pernía
,
I.
Tuñón
,
S.
Ferrer
, and
V.
Moliner
, “
Theoretical modeling on the reaction mechanism of p-nitrophenylmethylphosphate alkaline hydrolysis and its kinetic isotope effects
,”
J. Chem. Theory Comput.
5
,
439
442
(
2009
).
36.
D. G.
Truhlar
,
J.
Gao
,
M.
Garcia-Viloca
,
C.
Alhambra
,
J.
Corchado
,
M.
Luz Sanchez
, and
T. D.
Poulsen
, “
Ensemble-averaged variational transition state theory with optimized multidimensional tunneling for enzyme kinetics and other condensed-phase reactions
,”
Int. J. Quantum Chem.
100
,
1136
1152
(
2004
).
37.
C.
Alhambra
,
J.
Corchado
,
M. L.
Sánchez
,
M.
Garcia-Viloca
,
J.
Gao
, and
D. G.
Truhlar
, “
Canonical variational theory for enzyme kinetics with the protein mean force and multidimensional quantum mechanical tunneling dynamics. Theory and application to liver alcohol dehydrogenase
,”
J. Phys. Chem. B
105
,
11326
11340
(
2001
).
38.
D. G.
Truhlar
,
J.
Gao
,
C.
Alhambra
,
M.
Garcia-Viloca
,
J.
Corchado
,
M. L.
Sánchez
, and
J.
Villà
, “
The incorporation of quantum effects in enzyme kinetics modeling
,”
Acc. Chem. Res.
35
,
341
349
(
2002
).
39.
N.
Kanaan
,
S.
Ferrer
,
S.
Martí
,
M.
Garcia-Viloca
,
A.
Kohen
, and
V.
Moliner
, “
Temperature dependence of the kinetic isotope effects in thymidylate synthase. A theoretical study
,”
J. Am. Chem. Soc.
133
,
6692
6702
(
2011
).
40.
J.
Pu
,
J.
Gao
, and
D. G.
Truhlar
, “
Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions
,”
Chem. Rev.
106
,
3140
3169
(
2006
).
41.
A.
Kuppermann
and
D. G.
Truhlar
, “
Exact tunneling calculations
,”
J. Am. Chem. Soc.
93
,
1840
1851
(
1971
).
42.
B. C.
Garrett
and
D. G.
Truhlar
, “
Semiclassical tunneling calculations
,”
J. Phys. Chem.
83
,
2921
2926
(
1979
).
43.
M.
Garcia-Viloca
,
C.
Alhambra
,
D. G.
Truhlar
, and
J.
Gao
, “
Hydride transfer catalyzed by xylose isomerase: Mechanism and quantum effects
,”
J. Comput. Chem.
24
,
177
190
(
2003
).
44.
J.
Pang
,
J.
Pu
,
J.
Gao
,
D. G.
Truhlar
, and
R. K.
Allemann
, “
Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions
,”
J. Am. Chem. Soc.
128
,
8015
8023
(
2006
).
45.
Q.
Liu
,
J. A.
Tossell
, and
Y.
Liu
, “
On the proper use of the Bigeleisen–Mayer equation and corrections to it in the calculation of isotopic fractionation equilibrium constants
,”
Geochim. Cosmochim. Acta
74
,
6965
6983
(
2010
).
46.
I. H.
Williams
, “
Kinetic isotope effects from QM/MM subset Hessians: ‘Cut-off’ analysis for SN2 methyl transfer in solution
,”
J. Chem. Theory Comput.
8
,
542
553
(
2012
).
47.
J.
Cao
and
G. A.
Voth
, “
The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics
,”
J. Chem. Phys.
101
,
6168
6183
(
1994
).
48.
M.
Ceriotti
,
J.
More
, and
D. E.
Manolopoulos
, “
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
,”
Comput. Phys. Commun.
185
,
1019
1026
(
2014
).
49.
M.
Ceriotti
and
D. E.
Manolopoulos
, “
Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei
,”
Phys. Rev. Lett.
109
,
100604
(
2012
).
50.
M.
Ceriotti
,
D. E.
Manolopoulos
, and
M.
Parrinello
, “
Accelerating the convergence of path integral dynamics with a generalized Langevin equation
,”
J. Chem. Phys.
134
,
084104
(
2011
).
51.
K.-Y.
Wong
, “
Simulating biochemical physics with computers
,” Ph.D. thesis,
University of Minnesota
,
2008
.
52.
K.-Y.
Wong
, “
Review of Feynman’s path integral in quantum statistics: From the molecular Schrödinger equation to Kleinert’s variational perturbation theory
,”
Commun. Comput. Phys.
15
,
853
894
(
2014
).
53.
M.
Rostkowski
,
H. K. V.
Schürner
,
A.
Sowińska
,
L.
Vasquez
,
M.
Przydacz
,
M.
Elsner
, and
A.
Dybala-Defratyka
, “
Isotope effects on the vaporization of organic compounds from an aqueous solution–insight from experiment and computations
,”
J. Phys. Chem. B
125
,
13868
13885
(
2021
).
54.
J.
Kästner
and
W.
Thiel
, “
Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method: ‘Umbrella integration
,’”
J. Chem. Phys.
123
,
144104
(
2005
).
55.
B. W.
Zhang
,
J.
Xia
,
Z.
Tan
, and
R. M.
Levy
, “
A stochastic solution to the unbinned WHAM equations
,”
J. Phys. Chem. Lett.
6
,
3834
3840
(
2015
).
56.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
57.
T.-S.
Lee
,
B. K.
Radak
,
A.
Pabis
, and
D. M.
York
, “
A new maximum likelihood approach for free energy profile construction from molecular simulations
,”
J. Chem. Theory Comput.
9
,
153
164
(
2013
).
58.
T.-S.
Lee
,
B. K.
Radak
,
M.
Huang
,
K.-Y.
Wong
, and
D. M.
York
, “
Roadmaps through free energy landscapes calculated using the multidimensional vFEP approach
,”
J. Chem. Theory Comput.
10
,
24
34
(
2014
).
59.
E.
Vanden-Eijnden
and
M.
Venturoli
, “
Revisiting the finite temperature string method for the calculation of reaction tubes and free energies
,”
J. Chem. Phys.
130
,
194103
(
2009
).
60.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
Finite temperature string method for the study of rare events
,”
J. Phys. Chem. B
109
,
6688
6693
(
2005
).
61.
L.
Maragliano
,
A.
Fischer
,
E.
Vanden-Eijnden
, and
G.
Ciccotti
, “
String method in collective variables: Minimum free energy paths and isocommittor surfaces
,”
J. Chem. Phys.
125
,
024106
(
2006
).
62.
Y.
Zhou
,
P.
Ojeda-May
,
M.
Nagaraju
,
B.
Kim
, and
J.
Pu
, “
Mapping free energy pathways for ATP hydrolysis in the E. coli ABC transporter HlyB by the string method
,”
Molecules
23
,
2652
(
2018
).
63.
C. A.
Gonzalez
,
T. C.
Allison
, and
F.
Louis
, “
General expression for the effective mass in the one-dimensional treatment of tunneling corrections
,”
J. Phys. Chem. A
105
,
11034
11040
(
2001
).
64.
D. G.
Truhlar
and
B. C.
Garrett
, “
Reduced mass in the one-dimensional treatment of tunneling
,”
J. Phys. Chem. A
107
,
4006
4007
(
2003
).
65.
M.
Wolfsberg
and
M. J.
Stern
, “
Validity of some approximation procedures used in the theoretical calculation of isotope effects
,”
Pure Appl. Chem.
8
,
225
242
(
1964
).
66.
M. J.
Stern
and
M.
Wolfsberg
, “
Simplified procedure for the theoretical calculation of isotope effects involving large molecules
,”
J. Chem. Phys.
45
,
4105
4124
(
1966
).
67.
L.
Melander
and
W. H.
Saunders
, Jr.
,
Reaction Rates of Isotopic Molecules
(
John Wiley and Sons
,
New York
,
1980
).
68.
E. K.
Thornton
and
E. R.
Thornton
,
Isotope Effects in Chemical Reactions
(
Van Nostrand Reinhold
,
New York
,
1970
), Chap. 4, pp.
213
285
.
69.
G. D.
Ruggiero
,
S. J.
Guy
,
S.
Martí
,
V.
Moliner
, and
I. H.
Williams
, “
Vibrational analysis of the chorismate rearrangement: Relaxed force constants, isotope effects and activation entropies calculated for reaction in vacuum, water and the active site of chorismate mutase
,”
J. Phys. Org. Chem.
17
,
592
601
(
2004
).
70.
H.
Li
and
J. H.
Jensen
, “
Partial Hessian vibrational analysis: The localization of the molecular vibrational energy and entropy
,”
Theor. Chim. Acta
107
,
211
219
(
2002
).
71.
Y.
Tao
,
W.
Zou
,
S.
Nanayakkara
,
M.
Freindorf
, and
E.
Kraka
, “
A revised formulation of the generalized subsystem vibrational analysis (GSVA)
,”
Theor. Chem. Acc.
140
,
31
(
2021
).
72.
K.
Swiderek
,
A.
Dybala-Defratyka
, and
D. R.
Rohr
, “
A new scheme to calculate isotope effects
,”
J. Mol. Model.
17
,
2175
2182
(
2011
).
73.
T. J.
Giese
,
B. A.
Gregersen
,
Y.
Liu
,
K.
Nam
,
E.
Mayaan
,
A.
Moser
,
K.
Range
,
O. N.
Faza
,
C. S.
Lopez
,
A. R.
de Lera
,
G.
Schaftenaar
,
X.
Lopez
,
T.-S.
Lee
,
G.
Karypis
, and
D. M.
York
, “
QCRNA 1.0: A database of quantum calculations of RNA catalysis
,”
J. Mol. Graphics Modell.
25
,
423
433
(
2006
).
74.
J.
Zeng
,
T. J.
Giese
,
Ş.
Ekesan
, and
D. M.
York
, “
Development of range-corrected deep learning potentials for fast, accurate quantum mechanical/molecular mechanical simulations of chemical reactions in solution
,”
J. Chem. Theory Comput.
17
,
6993
7009
(
2021
).
75.
Q.
Cui
,
M.
Elstner
,
E.
Kaxiras
,
T.
Frauenheim
, and
M.
Karplus
, “
A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method
,”
J. Phys. Chem. B
105
,
569
585
(
2001
).
76.
M.
Elstner
,
T.
Frauenheim
,
E.
Kaxiras
,
G.
Seifert
, and
S.
Suhai
, “
A self-consistent charge density-functional based tight-binding scheme for large biomolecules
,”
Phys. Status Solidi B
217
,
357
376
(
2000
).
77.
T. A.
Niehaus
,
M.
Elstner
,
T.
Frauenheim
, and
S.
Suhai
, “
Application of an approximate density-functional method to sulfur containing compounds
,”
J. Mol. Struct.: THEOCHEM
541
,
185
194
(
2001
).
78.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
79.
D. A.
Case
,
K.
Belfon
,
I. Y.
Ben-Shalom
,
S. R.
Brozell
,
D. S.
Cerutti
,
T. E.
Cheatham
III
,
V. W. D.
Cruzeiro
,
T. A.
Darden
,
R. E.
Duke
,
G.
Giambasu
,
M. K.
Gilson
,
H.
Gohlke
,
A. W.
Goetz
,
R.
Harris
,
S.
Izadi
,
S. A.
Izmailov
,
K.
Kasavajhala
,
K.
Kovalenko
,
R.
Krasny
,
T.
Kurtzman
,
T.
Lee
,
S.
Le-Grand
,
P.
Li
,
C.
Lin
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
V.
Man
,
K.
Merz
,
Y.
Miao
,
O.
Mikhailovskii
,
G.
Monard
,
H.
Nguyen
,
A.
Onufriev
,
F.
Pan
,
S.
Pantano
,
R.
Qi
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
S.
Schott-Verdugo
,
J.
Shen
,
C. L.
Simmerling
,
N.
Skrynnikov
,
J.
Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
R. M.
Wilson
,
R. M.
Wolf
,
X.
Wu
,
Y.
Xiong
,
Y.
Xue
,
D. M.
York
, and
P. A.
Kollman
, AMBER 20,
University of California
,
San Francisco, CA
,
2020
.
80.
R.
Zwanzig
, “
Nonlinear generalized Langevin equations
,”
J. Stat. Phys.
9
,
215
220
(
1973
).
81.
K.
Nam
,
J.
Gao
, and
D. M.
York
, “
An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations
,”
J. Chem. Theory Comput.
1
,
2
13
(
2005
).
82.
T.
Kubař
,
K.
Welke
, and
G.
Groenhof
, “
New QM/MM implementation of the DFTB3 method in the gromacs package
,”
J. Comput. Chem.
36
,
1978
1989
(
2015
).
83.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
84.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
85.
T. J.
Giese
and
D. M.
York
, “
A GPU-accelerated parameter interpolation thermodynamic integration free energy method
,”
J. Chem. Theory Comput.
14
,
1564
1582
(
2018
).
86.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
87.
T. J.
Giese
,
J.
Zeng
, and
D. M.
York
, “
Multireference generalization of the weighted thermodynamic perturbation method
,”
J. Phys. Chem. A
126
,
8519
8533
(
2022
).
88.
J.
Kästner
,
J. M.
Carr
,
T. W.
Keal
,
W.
Thiel
,
A.
Wander
, and
P.
Sherwood
, “
DL-FIND: An open-source geometry optimizer for atomistic simulations
,”
J. Phys. Chem. A
113
,
11856
11865
(
2009
).
89.
J.
Baker
, “
An algorithm for the location of transition states
,”
J. Comput. Chem.
7
,
385
395
(
1986
).
90.
P. Y.
Ayala
and
H. B.
Schlegel
, “
A combined method for determining reaction paths minima and transition state geometries
,”
J. Chem. Phys.
107
,
375
384
(
1997
).
91.
C.
Choi
and
R.
Elber
, “
Reaction path study of helix formation in tetrapeptides: Effect of side chains
,”
J. Chem. Phys.
94
,
751
760
(
1991
).

Supplementary Material

You do not currently have access to this content.