Quasi-2D nanomaterials such as semiconducting nanoplatelets (NPLs) have drawn considerable interest due to their tunable optical properties and large surface to volume ratios. Cadmium selenide (CdSe) NPLs are of particular fundamental interest since their thicknesses can be controlled with atomic precision using well-established solution-phase synthetic techniques. Additionally, their large surface area makes them especially susceptible to changes in the identity of the capping ligands and, therefore, good model systems for understanding surface chemistry. In the current work, we explore the role of these ligands in altering the lattice parameters and optical properties of CdSe NPLs. We build on prior research that has employed varying binding groups, including thiols, phosphonic acids, and halides, to demonstrate ligand-dependent optical bandgap changes and concomitant lattice distortions as determined by powder x-ray diffraction (PXRD). Our work investigates the correlations between ligand-induced optical and structural changes with a series of ligands that maintain a consistent carboxylic acid binding group, thus allowing us to probe secondary ligand effects. We perform ligand exchanges on oleic acid-capped CdSe NPLs with benzoic acids, cinnamic acids, and cyclohexanecarboxylic acid. In all cases, the optical bandgap decreases upon ligand exchange, and a correlated expansion in the thickness of the NPLs is observed via PXRD. We also observe that the benzoic acids produce larger optical and structural distortions than the cinnamic acids. We show that the optical and structural correlation is nearly quantitatively described by quantum confinement effects, with the thicker quantum wells exhibiting smaller energy gaps.

1.
A.
Heuer-Jungemann
,
N.
Feliu
,
I.
Bakaimi
,
M.
Hamaly
,
A.
Alkilany
,
I.
Chakraborty
,
A.
Masood
,
M. F.
Casula
,
A.
Kostopoulou
,
E.
Oh
,
K.
Susumu
,
M. H.
Stewart
,
I. L.
Medintz
,
E.
Stratakis
,
W. J.
Parak
, and
A. G.
Kanaras
, “
The role of ligands in the chemical synthesis and applications of inorganic nanoparticles
,”
Chem. Rev.
119
(
8
),
4819
4880
(
2019
).
2.
J.
Zito
and
I.
Infante
, “
The future of ligand engineering in colloidal semiconductor nanocrystals
,”
Acc. Chem. Res.
54
(
17
),
1555
1564
(
2021
).
3.
Z.
Hens
and
J. C.
Martins
, “
A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals
,”
Chem. Mater.
25
(
8
),
1211
1221
(
2013
).
4.
R. D.
Harris
,
S.
Bettis Homan
,
M.
Kodaimati
,
C.
He
,
A. B.
Nepomnyashchii
,
N. K.
Swenson
,
S.
Lian
,
R.
Calzada
, and
E. A.
Weiss
, “
Electronic processes within quantum dot-molecule complexes
,”
Chem. Rev.
116
(
21
),
12865
12919
(
2016
).
5.
J. J.
Calvin
,
A. S.
Brewer
, and
A. P.
Alivisatos
, “
The role of organic ligand shell structures in colloidal nanocrystal synthesis
,”
Nat. Synth.
1
(
2
),
127
137
(
2022
).
6.
X.
Huang
,
V. K.
Parashar
, and
M. A. M.
Gijs
, “
Nucleation and growth behavior of CdSe nanocrystals synthesized in the presence of oleylamine coordinating ligand
,”
Langmuir
34
(
21
),
6070
6076
(
2018
).
7.
Y.
Jiang
,
W.-S.
Ojo
,
B.
Mahler
,
X.
Xu
,
B.
Abécassis
, and
B.
Dubertret
, “
Synthesis of CdSe nanoplatelets without short-chain ligands: Implication for their growth mechanisms
,”
ACS Omega
3
(
6
),
6199
6205
(
2018
).
8.
J.
van Embden
and
P.
Mulvaney
, “
Nucleation and growth of CdSe nanocrystals in a binary ligand system
,”
Langmuir
21
(
22
),
10226
10233
(
2005
).
9.
L.
Manna
,
E. C.
Scher
, and
A. P.
Alivisatos
, “
Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals
,”
J. Am. Chem. Soc.
122
(
51
),
12700
12706
(
2000
).
10.
Y.
Yang
,
H.
Qin
,
M.
Jiang
,
L.
Lin
,
T.
Fu
,
X.
Dai
,
Z.
Zhang
,
Y.
Niu
,
H.
Cao
,
Y.
Jin
,
F.
Zhao
, and
X.
Peng
, “
Entropic ligands for nanocrystals: From unexpected solution properties to outstanding processability
,”
Nano Lett.
16
(
4
),
2133
2138
(
2016
).
11.
C. L.
Hartley
,
M. L.
Kessler
, and
J. L.
Dempsey
, “
Molecular-level insight into semiconductor nanocrystal surfaces
,”
J. Am. Chem. Soc.
143
(
3
),
1251
1266
(
2021
).
12.
S.
Singh
,
R.
Tomar
,
S.
ten Brinck
,
J.
De Roo
,
P.
Geiregat
,
J. C.
Martins
,
I.
Infante
, and
Z.
Hens
, “
Colloidal CdSe nanoplatelets, A model for surface chemistry/optoelectronic property relations in semiconductor nanocrystals
,”
J. Am. Chem. Soc.
140
(
41
),
13292
13300
(
2018
).
13.
Y.
Gao
and
X.
Peng
, “
Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands
,”
J. Am. Chem. Soc.
137
(
12
),
4230
4235
(
2015
).
14.
M. M.
Krause
and
P.
Kambhampati
, “
Linking surface chemistry to optical properties of semiconductor nanocrystals
,”
Phys. Chem. Chem. Phys.
17
(
29
),
18882
18894
(
2015
).
15.
C.
Giansante
and
I.
Infante
, “
Surface traps in colloidal quantum dots: A combined experimental and theoretical perspective
,”
J. Phys. Chem. Lett.
8
(
20
),
5209
5215
(
2017
).
16.
A. J.
Houtepen
,
Z.
Hens
,
J. S.
Owen
, and
I.
Infante
, “
On the origin of surface traps in colloidal II–VI semiconductor nanocrystals
,”
Chem. Mater.
29
(
2
),
752
761
(
2017
).
17.
M.
Dufour
,
J.
Qu
,
C.
Greboval
,
C.
Méthivier
,
E.
Lhuillier
, and
S.
Ithurria
, “
Halide ligands to release strain in cadmium chalcogenide nanoplatelets and achieve high brightness
,”
ACS Nano
13
(
5
),
5326
5334
(
2019
).
18.
M. C.
Weidman
,
Q.
Nguyen
,
D.-M.
Smilgies
, and
W. A.
Tisdale
, “
Impact of size dispersity, ligand coverage, and ligand length on the structure of PbS nanocrystal superlattices
,”
Chem. Mater.
30
(
3
),
807
816
(
2018
).
19.
S. W.
Winslow
,
J. W.
Swan
, and
W. A.
Tisdale
, “
The importance of unbound ligand in nanocrystal superlattice formation
,”
J. Am. Chem. Soc.
142
(
21
),
9675
9685
(
2020
).
20.
A.
Antanovich
,
A.
Prudnikau
,
A.
Matsukovich
,
A.
Achtstein
, and
M.
Artemyev
, “
Self-assembly of CdSe nanoplatelets into stacks of controlled size induced by ligand exchange
,”
J. Phys. Chem. C
120
(
10
),
5764
5775
(
2016
).
21.
L.
Guillemeney
,
L.
Lermusiaux
,
G.
Landaburu
,
B.
Wagnon
, and
B.
Abécassis
, “
Curvature and self-assembly of semi-conducting nanoplatelets
,”
Commun. Chem.
5
(
1
),
7
(
2022
).
22.
D. E.
Westmoreland
,
R.
López-Arteaga
, and
E. A.
Weiss
, “
N-heterocyclic carbenes as reversible exciton-delocalizing ligands for photoluminescent quantum dots
,”
J. Am. Chem. Soc.
142
(
5
),
2690
2696
(
2020
).
23.
M. T.
Frederick
,
V. A.
Amin
, and
E. A.
Weiss
, “
Optical properties of strongly coupled quantum dot–ligand systems
,”
J. Phys. Chem. Lett.
4
(
4
),
634
640
(
2013
).
24.
V. A.
Amin
,
K. O.
Aruda
,
B.
Lau
,
A. M.
Rasmussen
,
K.
Edme
, and
E. A.
Weiss
, “
Dependence of the band gap of CdSe quantum dots on the surface coverage and binding mode of an exciton-delocalizing ligand methylthiophenolate
,”
J. Phys. Chem. C
119
(
33
),
19423
19429
(
2015
).
25.
A.
Antanovich
,
A. W.
Achtstein
,
A.
Matsukovich
,
A.
Prudnikau
,
P.
Bhaskar
,
V.
Gurin
,
M.
Molinari
, and
M.
Artemyev
, “
A strain-induced exciton transition energy shift in CdSe nanoplatelets: The impact of an organic ligand shell
,”
Nanoscale
9
(
45
),
18042
18053
(
2017
).
26.
B. T.
Diroll
and
R. D.
Schaller
, “
Shape-selective optical transformations of CdSe nanoplatelets driven by halide ion ligand exchange
,”
Chem. Mater.
31
(
9
),
3556
3563
(
2019
).
27.
Y.
Zhou
,
F.
Wang
, and
W. E.
Buhro
, “
Large exciton energy shifts by reversible surface exchange in 2D II–VI nanocrystals
,”
J. Am. Chem. Soc.
137
(
48
),
15198
15208
(
2015
).
28.
M. D.
Tessier
,
C.
Javaux
,
I.
Maksimovic
,
V.
Loriette
, and
B.
Dubertret
, “
Spectroscopy of single CdSe nanoplatelets
,”
ACS Nano
6
(
8
),
6751
6758
(
2012
).
29.
D.
Chen
,
Y.
Gao
,
Y.
Chen
,
Y.
Ren
, and
X.
Peng
, “
Structure identification of two-dimensional colloidal semiconductor nanocrystals with atomic flat basal planes
,”
Nano Lett.
15
(
7
),
4477
4482
(
2015
).
30.
S.
Ithurria
,
M. D.
Tessier
,
B.
Mahler
,
R. P. S. M.
Lobo
,
B.
Dubertret
, and
A. L.
Efros
, “
Colloidal nanoplatelets with two-dimensional electronic structure
,”
Nat. Mater.
10
(
12
),
936
941
(
2011
).
31.
C.
Bouet
,
M. D.
Tessier
,
S.
Ithurria
,
B.
Mahler
,
B.
Nadal
, and
B.
Dubertret
, “
Flat colloidal semiconductor nanoplatelets
,”
Chem. Mater.
25
(
8
),
1262
1271
(
2013
).
32.
C.
She
,
I.
Fedin
,
D. S.
Dolzhnikov
,
A.
Demortière
,
R. D.
Schaller
,
M.
Pelton
, and
D. V.
Talapin
, “
Low-threshold stimulated emission using colloidal quantum wells
,”
Nano Lett.
14
(
5
),
2772
2777
(
2014
).
33.
Z.
Chen
,
B.
Nadal
,
B.
Mahler
,
H.
Aubin
, and
B.
Dubertret
, “
Quasi-2D colloidal semiconductor nanoplatelets for narrow electroluminescence
,”
Adv. Funct. Mater.
24
(
3
),
295
302
(
2014
).
34.
S.
Ithurria
,
G.
Bousquet
, and
B.
Dubertret
, “
Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets
,”
J. Am. Chem. Soc.
133
(
9
),
3070
3077
(
2011
).
35.
S.
Ithurria
and
B.
Dubertret
, “
Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level
,”
J. Am. Chem. Soc.
130
(
49
),
16504
16505
(
2008
).
36.
B. T.
Diroll
, “
Ligand-dependent tuning of interband and intersubband transitions of colloidal CdSe nanoplatelets
,”
Chem. Mater.
32
(
13
),
5916
5923
(
2020
).
37.
Y.
Yao
and
W. E.
Buhro
, “
Thiol versus thiolate ligation on cadmium selenide quantum belts
,”
Chem. Mater.
32
(
1
),
205
214
(
2020
).
38.
H.
Po
,
C.
Dabard
,
B.
Roman
,
E.
Reyssat
,
J.
Bico
,
B.
Baptiste
,
E.
Lhuillier
, and
S.
Ithurria
, “
Chiral helices formation by self-assembled molecules on semiconductor flexible substrates
,”
ACS Nano
16
(
2
),
2901
2909
(
2022
).
39.
Q.
Martinet
,
J.
Baronnier
,
A.
Girard
,
T.
Albaret
,
L.
Saviot
,
A.
Mermet
,
B.
Abecassis
,
J.
Margueritat
, and
B.
Mahler
, “
Ligand-dependent nano-mechanical properties of CdSe nanoplatelets: Calibrating nanobalances for ligand affinity monitoring
,”
Nanoscale
13
(
18
),
8639
8647
(
2021
).
40.
A.
Brumberg
,
M. S.
Kirschner
,
B. T.
Diroll
,
K. R.
Williams
,
N. C.
Flanders
,
S. M.
Harvey
,
A. A.
Leonard
,
N. E.
Watkins
,
C.
Liu
,
E. D.
Kinigstein
,
J.
Yu
,
A. M.
Evans
,
Y.
Liu
,
S. A.
Cuthriell
,
S.
Panuganti
,
W. R.
Dichtel
,
M. G.
Kanatzidis
,
M. R.
Wasielewski
,
X.
Zhang
,
L. X.
Chen
, and
R. D.
Schaller
, “
Anisotropic transient disordering of colloidal, two-dimensional CdSe nanoplatelets upon optical excitation
,”
Nano Lett.
21
(
3
),
1288
1294
(
2021
).
41.
D. M.
Kroupa
,
M.
Vörös
,
N. P.
Brawand
,
B. W.
McNichols
,
E. M.
Miller
,
J.
Gu
,
A. J.
Nozik
,
A.
Sellinger
,
G.
Galli
, and
M. C.
Beard
, “
Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification
,”
Nat. Commun.
8
(
1
),
15257
(
2017
).
42.
J.
Mooney
and
P.
Kambhampati
, “
Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra
,”
J. Phys. Chem. Lett.
4
(
19
),
3316
3318
(
2013
).
43.
C. J. A.
Maddux
,
D. F.
Kelley
, and
A. M.
Kelley
, “
Weak exciton–phonon coupling in CdSe nanoplatelets from quantitative resonance Raman intensity analysis
,”
J. Phys. Chem. C
122
(
47
),
27100
27106
(
2018
).
44.
D. M.
Sagar
,
R. R.
Cooney
,
S. L.
Sewall
,
E. A.
Dias
,
M. M.
Barsan
,
I. S.
Butler
, and
P.
Kambhampati
, “
Size dependent, state-resolved studies of exciton-phonon couplings in strongly confined semiconductor quantum dots
,”
Phys. Rev. B
77
(
23
),
235321
(
2008
).
45.
T. G.
Mack
,
L.
Jethi
,
M.
Andrews
, and
P.
Kambhampati
, “
Direct observation of vibronic coupling between excitonic states of CdSe nanocrystals and their passivating ligands
,”
J. Phys. Chem. C
123
(
8
),
5084
5091
(
2019
).
46.
J. C.
van der Bok
,
D. M.
Dekker
,
M. L. J.
Peerlings
,
B. B. V.
Salzmann
, and
A.
Meijerink
, “
Luminescence line broadening of CdSe nanoplatelets and quantum dots for application in w-LEDs
,”
J. Phys. Chem. C
124
(
22
),
12153
12160
(
2020
).
47.
W.
Shan
,
W.
Walukiewicz
,
J. W.
Ager
,
K. M.
Yu
,
J.
Wu
, and
E. E.
Haller
, “
Pressure dependence of the fundamental band-gap energy of CdSe
,”
Appl. Phys. Lett.
84
(
1
),
67
69
(
2004
).
48.
Y.
Yao
,
Y.
Zhou
,
W. M.
Sanderson
,
R. A.
Loomis
, and
W. E.
Buhro
, “
Metal-halide-ligated cadmium selenide quantum belts by facile surface exchange
,”
Chem. Mater.
30
(
8
),
2848
2857
(
2018
).
49.
E. T.
Vickers
,
E. E.
Enlow
,
W. G.
Delmas
,
A. C.
DiBenedetto
,
A. H.
Chowdhury
,
B.
Bahrami
,
B. W.
Dreskin
,
T. A.
Graham
,
I. N.
Hernandez
,
S. A.
Carter
,
S.
Ghosh
,
Q.
Qiao
, and
J. Z.
Zhang
, “
Enhancing charge carrier delocalization in perovskite quantum dot solids with energetically aligned conjugated capping ligands
,”
ACS Energy Lett.
5
(
3
),
817
825
(
2020
).

Supplementary Material

You do not currently have access to this content.