The initial stages of contact melting and eutectic crystallization in sharp concentration gradients between two crystalline components are studied and simulated analytically and numerically. Contact melting is shown to become possible only after the formation of some critical width of solid solutions. Crystallization in the sharp concentration gradient may lead to the formation of periodic structures in the interface vicinity. In addition, at least for the eutectic systems of Ag–Cu type, the threshold temperature should exist, under which the “precipitation + growth” mechanism of crystallization may be changed to “polymorphic crystallization with eutectic composition + subsequent spinodal decomposition.”

1.
W.
Kurz
and
P. R.
Sahm
, “
Directional solidification of eutectic materials
,”
1989
;
W.
Kurz
and
D. J.
Fisher
,
Fundamentals of Solidification
(
Trans Tech Publications Ltd., Switzerland
,
1984
).
2.
Yu.
Taran
and
V.
Mazur
,
Struktura Eutekticheskikh Splavov
(
Metallurgy Publishing House
,
Moscow
,
1978
).
3.
D. A.
Pawlak
,
K.
Kolodziejak
,
S.
Turczynski
,
J.
Kisielewski
,
K.
Rożniatowski
,
R.
Diduszko
,
M.
Kaczkan
, and
M.
Malinowski
, “
Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12–TbScO3:Pr eutectic
,”
Chem. Mater.
18
(
9
),
2450
2457
(
2006
).
4.
K.
Sadecka
,
M.
Gajc
,
K.
Orlinski
,
H. B.
Surma
,
A.
Klos
,
I.
Jozwik-Biala
,
K.
Sobczak
,
P.
Dluzewski
,
J.
Toudert
, and
D. A.
Pawlak
, “
When eutectics meet plasmonics: Nanoplasmonic, volumetric, self‐organized, silver‐based eutectic
,”
Adv. Opt. Mater.
3
(
3
),
381
389
(
2015
).
5.
K.
Wysmulek
,
J.
Sar
,
P.
Osewski
,
K.
Orlinski
,
K.
Kolodziejak
,
A.
Trenczek-Zajac
,
M.
Radecka
, and
D. A.
Pawlak
, “
A SrTiO3-TiO2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production
,”
Appl. Catal., B
206
,
538
546
(
2017
).
6.
D. A.
Pawlak
,
S.
Turczynski
,
M.
Gajc
,
K.
Kolodziejak
,
R.
Diduszko
,
K.
Rozniatowski
,
J.
Smalc
, and
I.
Vendik
, “
How far are we from making metamaterials by self‐organization?
,”
Adv. Funct. Mater.
20
(
7
),
1116
1124
(
2010
).
7.
P.
Osewski
,
A.
Belardini
,
M.
Centini
,
C.
Valagiannopoulos
,
G.
Leahu
,
R.
Li Voti
,
M.
Tomczyk
,
A.
Alù
,
D. A.
Pawlak
, and
C.
Sibilia
, “
New self‐organization route to tunable narrowband optical filters and polarizers demonstrated with ZnO–ZnWO4 eutectic composite
,”
Adv. Opt. Mater.
8
(
7
),
1901617
(
2020
).
8.
M.
Şerefoğlu
,
S.
Bottin-Rousseau
, and
S.
Akamatsu
, “
Lamella-rod pattern transition and confinement effects during eutectic growth
,”
Acta Mater.
242
,
118425
(
2023
).
9.
L.
Rátkai
,
G. I.
Tóth
,
L.
Környei
,
T.
Pusztai
, and
L.
Gránásy
, “
Phase-field modeling of eutectic structures on the nanoscale: The effect of anisotropy
,”
J. Mater. Sci.
52
(
10
),
5544
5558
(
2017
).
10.
P. K.
Galenko
and
D. M.
Herlach
, “
Diffusionless crystal growth in rapidly solidifying eutectic systems
,”
Phys. Rev. Lett.
96
(
15
),
150602
(
2006
).
11.
P. K.
Galenko
and
D.
Jou
, “
Rapid solidification as non-ergodic phenomenon
,”
Phys. Rep.
818
,
1
70
(
2019
).
12.
S.
Akamatsu
,
S.
Bottin-Rousseau
, and
G.
Faivre
, “
Determination of the Jackson–Hunt constants of the In–In2Bi eutectic alloy
,”
Acta Mater.
59
(
20
),
7586
7591
(
2011
).
13.
K. A.
Jackson
and
J. D.
Hunt
, “
Lamellar and Rod Eutectic Growth
,”
Trans. Metall. Soc. AIME
236
,
1129
1142
(
1966
).
14.
S.
Bottin-Rousseau
,
V. T.
Witusiewicz
,
U.
Hecht
,
J.
Fernandez
,
A.
Laveron-Simavilla
, and
S.
Akamatsu
, “
Coexistence of rod-like and lamellar eutectic growth patterns
,”
Scr. Mater.
207
,
114314
(
2022
).
15.
M. A.
Ivanov
and
A. Y.
Naumuk
, “
Kinetics of eutectic solidification
,”
Phys. Met. Metallogr.
115
(
5
),
471
480
(
2014
).
16.
T.
Pusztai
,
L.
Rátkai
,
L.
Horváth
, and
L.
Gránásy
, “
Phase-field modelling of directional melting of lamellar and rod eutectic structures
,”
Acta Mater.
227
,
117678
(
2022
).
17.
C.
Guo
,
J.
Wang
,
J.
Li
,
Z.
Wang
,
Y.
Huang
,
J.
Gu
, and
X.
Lin
, “
Coupling eutectic nucleation mechanism investigated by phase field crystal model
,”
Acta Mater.
145
,
175
185
(
2018
).
18.
L.
Gránásy
,
G. I.
Tóth
,
J. A.
Warren
et al, “
Phase-field modeling of crystal nucleation in undercooled liquids–A review
,”
Prog. Mater. Sci.
106
,
100569
(
2019
).
19.
K. N.
Tu
and
D.
Turnbull
, “
Morphology of cellular precipitation of tin from lead-tin bicrystals
,”
Acta Metall.
15
(
2
),
369
376
(
1967
).
20.
K. N.
Tu
and
D.
Turnbull
, “
Morphology of cellular precipitation of tin from lead-tin bicrystals-II
,”
Acta Metall.
15
(
8
),
1317
1323
(
1967
).
21.
N. T.
Gladkikh
,
A. P.
Kryshtal’
, and
R. V.
Sukhov
, “
Contact melting in layered film systems of the eutectic type
,”
Phys. Solid State
52
(
3
),
633
640
(
2010
).
22.
A. P.
Kryshtal
,
R. V.
Sukhov
, and
A. A.
Minenkov
, “
Critical thickness of contact melting in the Au/Ge layered film system
,”
J. Alloys Compd.
512
(
1
),
311
315
(
2012
).
23.
A.
Kryshtal
,
A.
Minenkov
,
S.
Bogatyrenko
, and
A.
Gruszczyński
, “
Melting process and the size depression of the eutectic temperature in Ag/Ge and Ge/Ag/Ge layered films
,”
J. Alloys Compd.
786
,
817
825
(
2019
).
24.
B.
Bokhonov
and
M.
Korchagin
, “
In situ investigation of stage of the formation of eutectic alloys in Si–Au and Si–Al systems
,”
J. Alloys Compd.
312
(
1–2
),
238
250
(
2000
).
25.
B.
Bokhonov
and
M.
Korchagin
, “
In-situ investigation of the formation of eutectic alloys in the systems silicon–silver and silicon–copper
,”
J. Alloys Compd.
335
(
1–2
),
149
156
(
2002
).
26.
O. V.
Bystrenko
and
V. V.
Kartuzov
, “
Contact melting and the structure of binary eutectic near the eutectic point
,”
J. Alloys Compd.
617
,
124
128
(
2014
).
27.
A.
Kryshtal
,
S.
Bogatyrenko
, and
P.
Ferreira
, “
Metal-induced crystallization of amorphous semiconductor films: Nucleation phenomena in Ag-Ge films
,”
Appl. Surf. Sci.
606
,
154873
(
2022
).
28.
A. M.
Gusak
, “
Peculiarities of nucleation in the field of a concentration gradient of the binary system
,”
Ukr. J. Phys.
35
(
5
),
725
729
(
1990
).
29.
P. J.
Desré
and
A. R.
Yavari
, “
Suppression of crystal nucleation in amorphous layers with sharp concentration gradients
,”
Phys. Rev. Lett.
64
(
13
),
1533
(
1990
).
30.
P. J.
Desré
, “
Effect of sharp concentration gradients on the stability of a two-component amorphous layer obtained by solid state reaction
,”
Acta Metall. Mater.
39
(
10
),
2309
2315
(
1991
).
31.
A. M.
Gusak
and
A. V.
Nazarov
, “
On the description of solid state amorphizing reactions
,”
J. Phys.: Condens. Matter
4
(
20
),
4753
(
1992
).
32.
F.
Hodaj
,
A. M.
Gusak
, and
P. J.
Desre
, “
Effect of sharp concentration gradients on the nucleation of intermetallics in disordered solids
,”
Philos. Mag. A
77
(
6
),
1471
1479
(
1998
).
33.
A. M.
Gusak
,
F.
Hodaj
, and
A. O.
Bogatyrev
, “
Kinetics of nucleation in the concentration gradient
,”
J. Phys.: Condens. Matter
13
(
12
),
2767
(
2001
).
34.
F.
Hodaj
and
A. M.
Gusak
, “
Suppression of intermediate phase nucleation in binary couples with metastable solubility
,”
Acta Mater.
52
(
14
),
4305
4315
(
2004
).
35.
J. H.
Perepezko
, “
Nucleation-controlled reactions and metastable structures
,”
Prog. Mater. Sci.
49
(
3–4
),
263
284
(
2004
).
36.
G.
Schmitz
,
C.
Ene
,
C.
Lang
, and
V.
Vovk
, “
Atom probe tomography: Studying reactions on top of the tip
,”
Adv. Sci. Technol.
46
,
126
135
(
2006
).
37.
B.
Parditka
,
H.
Zaka
,
G.
Erdélyi
,
G. A.
Langer
,
M.
Ibrahim
,
G.
Schmitz
,
Z.
Balogh-Michels
, and
Z.
Erdélyi
, “
The transition from linear to-parabolic growth of Cu3Si phase
,”
Scr. Mater.
149
,
36
39
(
2018
).
38.
M. O.
Pasichnyy
,
G.
Schmitz
,
A. M.
Gusak
, and
V.
Vovk
, “
Application of the critical gradient concept to the nucleation of the first-product phase in Co/Al thin films
,”
Phys. Rev. B
72
(
1
),
014118
(
2005
).
39.
M. J.
Cherukara
,
T. P.
Weihs
, and
A.
Strachan
, “
Molecular dynamics simulations of the reaction mechanism in Ni/Al reactive intermetallics
,”
Acta Mater.
96
,
1
9
(
2015
).
40.
P.
Yi
,
M. L.
Falk
, and
T. P.
Weihs
, “
Suppression of homogeneous crystal nucleation of the NiAl intermetallic by a composition gradient
,”
J. Chem. Phys.
146
(
18
),
184501
(
2017
).
41.
A. M.
Gusak
and
K. P.
Gurov
, “
The kinetics of phase formation in the diffusion zone during interdiffusion. General theory
,”
Fiz. Met. Metalloved.
53
(
5
),
842
847
(
1982
).
42.
A.
Gusak
and
K. P.
Gurov
, “
Peculiarities of intermediate phase nucleation in the process of chemical diffusion
,”
Solid State Phenom
23–24
,
117
122
(
1992
).
43.
A. M.
Gusak
and
G. V.
Lucenko
, “
Interdiffusion and solid state reactions in powder mixtures—One more model
,”
Acta Mater.
46
(
10
),
3343
3353
(
1998
).
44.
A. M.
Gusak
,
F.
Hodaj
, and
G.
Schmitz
, “
Flux-driven nucleation at interfaces during reactive diffusion
,”
Philos. Mag. Lett.
91
(
9
),
610
620
(
2011
).
45.
A. M.
Gusak
,
O. Y.
Lyashenko
, and
F.
Hodaj
, “
The competition of intermediate phases in the diffusion zone
,”
Inorg. Mater.: Appl. Res.
10
(
3
),
517
524
(
2019
).
46.
A. M.
Gusak
and
K. N.
Tu
, “
Kinetic theory of flux-driven ripening
,”
Phys. Rev. B
66
(
11
),
115403
(
2002
).
47.
J. O.
Suh
,
K. N.
Tu
,
G. V.
Lutsenko
, and
A. M.
Gusak
, “
Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper
,”
Acta Mater.
56
(
5
),
1075
1083
(
2008
).
48.
A. M.
Gusak
,
K. N.
Tu
, and
C.
Chen
, “
Extremely rapid grain growth in scallop-type Cu6Sn5 during solid–liquid interdiffusion reactions in micro-bump solder joints
,”
Scr. Mater.
179
,
45
48
(
2020
).
49.
J.-O.
Andersson
,
T.
Helander
,
L.
Höglund
,
P.
Shi
, and
B.
Sundman
, “
Thermo-Calc and DICTRA, computational tools for materials science
,”
Calphad
26
,
273
312
(
2002
). Thermo-Calc version 2023a.
50.
Z.
Erdélyi
,
M.
Pasichnyy
,
V.
Bezpalchuk
,
J. J.
Tomán
,
B.
Gajdics
, and
A. M.
Gusak
, “
Stochastic kinetic mean field model
,”
Comput. Phys. Commun.
204
,
31
37
(
2016
).
51.
See http://skmf.eu/ for the basic information about the Stochastic Kinetic Mean Field model and method.
52.
V. M.
Bezpalchuk
,
R.
Kozubski
, and
A. M.
Gusak
, “
Simulation of the tracer diffusion, bulk ordering, and surface reordering in fcc structures by kinetic mean-field method
,”
Usp. Fiz. Met.
18
(
3
),
205
233
(
2017
).
53.
A.
Gusak
,
T.
Zaporozhets
, and
N.
Storozhuk
, “
Phase competition in solid-state reactive diffusion revisited—Stochastic kinetic mean-field approach
,”
J. Chem. Phys.
150
(
17
),
174109
(
2019
).
54.
T. V.
Zaporozhets
,
A.
Taranovskyy
,
G.
Jáger
,
A. M.
Gusak
,
Z.
Erdélyi
, and
J. J.
Tomán
, “
The effect of introducing stochasticity to kinetic mean-field calculations: Comparison with lattice kinetic Monte Carlo in case of regular solid solutions
,”
Comput. Mater. Sci.
171
,
109251
(
2020
).
55.
B.
Gajdics
,
J. J.
Tomán
, and
Z.
Erdélyi
, “
An effective method to calculate atomic movements in 3D objects with tuneable stochasticity (3DO-SKMF)
,”
Comput. Phys. Commun.
258
,
107609
(
2021
).
56.
B.
Gajdics
,
J. J.
Tomán
,
H.
Zapolsky
,
Z.
Erdélyi
, and
G.
Demange
, “
A multiscale procedure based on the stochastic kinetic mean field and the phase-field models for coarsening
,”
J. Appl. Phys.
126
(
6
),
065106
(
2019
).
57.
G.
Jáger
,
J. J.
Tomán
, and
Z.
Erdélyi
, “
Nanoparticle formation by spinodal decomposition in ion implanted samples
,”
J. Alloys Compd.
910
,
164781
(
2022
).
58.
G.
Martin
, “
Atomic mobility in Cahn’s diffusion model
,”
Phys. Rev. B
41
(
4
),
2279
(
1990
).
59.
Z.
Erdélyi
,
M.
Sladecek
,
L. M.
Stadler
,
I.
Zizak
,
G. A.
Langer
,
M.
Kis-Varg
,
D. L.
Beke
, and
B.
Sepiol
, “
Transient interface sharpening in miscible alloys
,”
Science
306
(
5703
),
1913
1915
(
2004
).
60.
Z.
Erdélyi
,
D. L.
Beke
, and
A.
Taranovskyy
, “
Dissolution and off-stoichiometric formation of compound layers in solid state reactions
,”
Appl. Phys. Lett.
92
(
13
),
133110
(
2008
).
61.
N. V.
Storozhuk
,
K. V.
Sopiga
, and
A. M.
Gusak
, “
Mean-field and quasi-phase-field models of nucleation and phase competition in reactive diffusion
,”
Philos. Mag.
93
(
16
),
1999
2012
(
2013
).
62.
E.
Cini
,
B.
Vinet
, and
P. J.
Desre
, “
A thermodynamic approach to homogeneous nucleation via fluctuations of concentration in binary liquid alloys
,”
Philos. Mag. A
80
(
4
),
955
966
(
2000
).
63.
P. J.
Desre
and
A.
Gusak
, “
Relaxation of thermal concentration fluctuations in ternary liquids
,”
Philos. Mag. A
81
(
10
),
2503
2514
(
2001
).
64.
J. W. P.
Schmelzer
and
A. S.
Abyzov
, “
How do crystals nucleate and grow: Ostwald’s rule of stages and beyond
,” in
Thermal Physics and Thermal Analysis
(
Springer
,
Cham
,
2017
), pp.
195
211
.
65.
A. M.
Gusak
,
T. V.
Zaporozhets
,
Y. O.
Lyashenko
,
S. V.
Kornienko
,
M. O.
Pasichnyy
, and
A. S.
Shirinyan
,
Diffusion-Controlled Solid State Reactions: In Alloys, Thin Films and Nanosystems
(
John Wiley & Sons
,
2010
).
66.
A. M.
Gusak
,
O. V.
Dubiy
, and
S. V.
Kornienko
, “
Zarodysheobrazovaniye promezhutochnykh faz pri vzaimnoy diffuzii (Nucleation of intermediate phases upon interdiffusion)
,”
Ukr. J. Phys.
36
,
286
291
(
1991
).
67.
D. B.
Butrymowicz
,
J. R.
Manning
, and
M. E.
Read
, “
Diffusion in copper and copper alloys, Part II. Copper‐silver and copper‐gold systems
,”
J. Phys. Chem. Ref. Data
3
(
2
),
527
602
(
1974
).
68.
V.
Plechystyy
et al, “
Atomic composition and structure evolution of the solid-liquid boundary in Al-Si system during interfacial diffusion and contact melting
,”
J. Phase Equilib. Diffus.
43
(
2
),
256
265
(
2022
).
69.
S. A.
Kukushkin
and
A. V.
Osipov
, “
Growth, structure, and morphological stability of nuclei growing from eutectic melts
,”
Phys. Solid State
39
,
1299
1304
(
1997
).
70.
M.
Hillert
, “
A solid-solution model for inhomogeneous systems
,”
Acta Metall.
9
(
6
),
525
535
(
1961
).
71.
Y.
Ni
and
A. G.
Khachaturyan
, “
From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition
,”
Nat. Mater.
8
(
5
),
410
414
(
2009
).
72.
Y.
Ni
,
W.
Rao
, and
A. G.
Khachaturyan
, “
Pseudospinodal mode of decomposition in films and formation of chessboard-like nanostructure
,”
Nano Lett.
9
(
9
),
3275
3281
(
2009
).
73.
J. W.
Arblaster
, “
Thermodynamic properties of copper
,”
J. Phase Equilib. Diffus.
36
,
422
444
(
2015
).
74.
J. W.
Arblaster
, “
Thermodynamic properties of silver
,”
J. Phase Equilib. Diffus.
36
,
573
591
(
2015
).

Supplementary Material

You do not currently have access to this content.