The melting line of the Weeks–Chandler–Andersen (WCA) system was recently determined accurately and compared to the predictions of four analytical hard-sphere approximations [Attia et al., J. Chem. Phys. 157, 034502 (2022)]. Here, we study an alternative zero-parameter prediction based on the isomorph theory, the input of which are properties at a single reference state point on the melting line. The two central assumptions made are that the harmonic-repulsive potential approximates the WCA potential and that pair collisions are uncorrelated. The new approach gives excellent predictions at high temperatures, while the hard-sphere-theory based predictions are better at lower temperatures. Supplementing the WCA investigation, the face-centered-crystal to fluid coexistence line is determined for a system of harmonic-repulsive particles and compared to the zero-parameter theories. The results indicate that the excellent isomorph-theory predictions for the WCA potential at higher temperatures may be partly due to a cancellation of errors between the two above-mentioned assumptions.

1.
J. D.
Bernal
, “
The Bakerian lecture, 1962. The structure of liquids
,”
Proc. R. Soc. London, Ser. A
280
,
299
322
(
1964
); available at https://www.jstor.org/stable/2415872.
2.
J. A.
Barker
and
D.
Henderson
, “
Perturbation theory and equation of state for fluids. II. A successful theory of liquids
,”
J. Chem. Phys.
47
,
4714
4721
(
1967
).
3.
B.
Widom
, “
Intermolecular forces and the nature of the liquid state
,”
Science
157
,
375
382
(
1967
).
4.
H. C.
Andersen
,
J. D.
Weeks
, and
D.
Chandler
, “
Relationship between the hard-sphere fluid and fluids with realistic repulsive forces
,”
Phys. Rev. A
4
,
1597
1607
(
1971
).
5.
J. A.
Barker
and
D.
Henderson
, “
What is ‘liquid?’ Understanding the states of matter
,”
Rev. Mod. Phys.
48
,
587
671
(
1976
).
6.
D.
Chandler
,
J. D.
Weeks
, and
H. C.
Andersen
, “
Van der Waals picture of liquids, solids, and phase transformations
,”
Science
220
,
787
794
(
1983
).
7.
L.
Berthier
and
G.
Tarjus
, “
Nonperturbative effect of attractive forces in viscous liquids
,”
Phys. Rev. Lett.
103
,
170601
(
2009
).
8.
U. R.
Pedersen
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Repulsive reference potential reproducing the dynamics of a liquid with attractions
,”
Phys. Rev. Lett.
105
,
157801
(
2010
).
9.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
,
4th ed.
(
Academic
,
New York
,
2013
).
10.
Z. E.
Dell
and
K. S.
Schweizer
, “
Microscopic theory for the role of attractive forces in the dynamics of supercooled liquids
,”
Phys. Rev. Lett.
115
,
205702
(
2015
).
11.
J. C.
Dyre
, “
Simple liquids’ quasiuniversality and the hard-sphere paradigm
,”
J. Phys. Condens. Matter
28
,
323001
(
2016
).
12.
J.
Chattoraj
and
M. P.
Ciamarra
, “
Role of attractive forces in the relaxation dynamics of supercooled liquids
,”
Phys. Rev. Lett.
124
,
028001
(
2020
).
13.
M. K.
Nandi
and
S. M.
Bhattacharyya
, “
Microscopic theory of softness in supercooled liquids
,”
Phys. Rev. Lett.
126
,
208001
(
2021
).
14.
A.
Singh
and
Y.
Singh
, “
How attractive and repulsive interactions affect structure ordering and dynamics of glass-forming liquids
,”
Phys. Rev. E
103
,
052105
(
2021
).
15.
S.
Toxvaerd
, “
Role of the attractive forces in a supercooled liquid
,”
Phys. Rev. E
103
,
022611
(
2021
).
16.
D. M.
Heyes
and
H.
Okumura
, “
Equation of state and structural properties of the Weeks–Chandler–Andersen fluid
,”
J. Chem. Phys.
124
,
164507
(
2006
).
17.
E.
Attia
,
J. C.
Dyre
, and
U. R.
Pedersen
, “
Extreme case of density scaling: The Weeks–Chandler–Andersen system at low temperatures
,”
Phys. Rev. E
103
,
062140
(
2021
).
18.
W. G.
Hoover
,
S. G.
Gray
, and
K. W.
Johnson
, “
Thermodynamic properties of the fluid and solid phases for inverse power potentials
,”
J. Chem. Phys.
55
,
1128
1136
(
1971
).
19.
S. M.
Stishov
, “
The thermodynamics of melting of simple substances
,”
Sov. Phys. Usp.
17
,
625
643
(
1975
).
20.
D. A.
Young
, “
Soft-sphere model for liquid metals
,” Tech. Rep.,
Lawrence Livermore National Lab. (LLNL)
,
Livermore, CA
,
1977
.
21.
F.
Hummel
,
G.
Kresse
,
J. C.
Dyre
, and
U. R.
Pedersen
, “
Hidden scale invariance of metals
,”
Phys. Rev. B
92
,
174116
(
2015
).
22.
Y.
Rosenfeld
, “
Relation between the transport coefficients and the internal entropy of simple systems
,”
Phys. Rev. A
15
,
2545
2549
(
1977
).
23.
Y.
Rosenfeld
, “
A quasi-universal scaling law for atomic transport in simple fluids
,”
J. Phys.: Condens. Matter
11
,
5415
5427
(
1999
).
24.
L.
Boltzmann
,
Lectures on Gas Theory
(
Dover Publications
,
1864
).
25.
C. M.
Roland
,
S.
Hensel-Bielowka
,
M.
Paluch
, and
R.
Casalini
, “
Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure
,”
Rep. Prog. Phys.
68
,
1405
1478
(
2005
).
26.
D.
Gundermann
,
U. R.
Pedersen
,
T.
Hecksher
,
N. P.
Bailey
,
B.
Jakobsen
,
T.
Christensen
,
N. B.
Olsen
,
T. B.
Schrøder
,
D.
Fragiadakis
,
R.
Casalini
,
C.
Michael Roland
,
J. C.
Dyre
, and
K.
Niss
, “
Predicting the density-scaling exponent of a glass-forming liquid from Prigogine–Defay ratio measurements
,”
Nat. Phys.
7
,
816
821
(
2011
).
27.
N.
Gnan
,
T. B.
Schrøder
,
U. R.
Pedersen
,
N. P.
Bailey
, and
J. C.
Dyre
, “
Pressure-energy correlations in liquids. IV. ‘Isomorphs’ in liquid phase diagrams
,”
J. Chem. Phys.
131
,
234504
(
2009
).
28.
T. B.
Schrøder
and
J. C.
Dyre
, “
Simplicity of condensed matter at its core: Generic definition of a Roskilde-simple system
,”
J. Chem. Phys.
141
,
204502
(
2014
).
29.
T. B.
Schrøder
,
N.
Gnan
,
U. R.
Pedersen
,
N. P.
Bailey
, and
J. C.
Dyre
, “
Pressure-energy correlations in liquids. V. Isomorphs in generalized Lennard-Jones systems
,”
J. Chem. Phys.
134
,
164505
(
2011
).
30.
L.
Friedeheim
,
N. P.
Bailey
, and
J. C.
Dyre
, “
Effectively one-dimensional phase diagram of CuZr liquids and glasses
,”
Phys. Rev. B
103
,
134204
(
2021
).
31.
A. K.
Bacher
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
The EXP pair-potential system. II. Fluid phase isomorphs
,”
J. Chem. Phys.
149
,
114502
(
2018
).
32.
A. K.
Bacher
,
U. R.
Pedersen
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
The EXP pair-potential system. IV. Isotherms, isochores, and isomorphs in the two crystalline phases
,”
J. Chem. Phys.
152
,
094505
(
2020
).
33.
H. W.
Hansen
,
F.
Lundin
,
K.
Adrjanowicz
,
B.
Frick
,
A.
Matic
, and
K.
Niss
, “
Density scaling of structure and dynamics of an ionic liquid
,”
Phys. Chem. Chem. Phys.
22
,
14169
14176
(
2020
).
34.
S.
Mehri
,
J. C.
Dyre
, and
T. S.
Ingebrigtsen
, “
Hidden scale invariance in the Gay–Berne model
,”
Phys. Rev. E
105
,
064703
(
2022
).
35.
E.
Attia
,
J. C.
Dyre
, and
U. R.
Pedersen
, “
Isomorph invariance in the liquid and plastic-crystal phases of asymmetric-dumbbell models
,”
Fluids
2
,
388
403
(
2022
).
36.
A.
Sanz
,
T.
Hecksher
,
H. W.
Hansen
,
J. C.
Dyre
,
K.
Niss
, and
U. R.
Pedersen
, “
Experimental evidence for a state-point-dependent density-scaling exponent of liquid dynamics
,”
Phys. Rev. Lett.
122
,
055501
(
2019
).
37.
U. R.
Pedersen
,
L.
Costigliola
,
N. P.
Bailey
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Thermodynamics of freezing and melting
,”
Nat. Commun.
7
,
12386
(
2016
).
38.
Y.-L.
Zhu
and
Z.-Y.
Lu
, “
Phase diagram of spherical particles interacted with harmonic repulsions
,”
J. Chem. Phys.
134
,
044903
(
2011
).
39.
P. S.
Mohanty
,
D.
Paloli
,
J. J.
Crassous
,
E.
Zaccarelli
, and
P.
Schurtenberger
, “
Effective interactions between soft-repulsive colloids: Experiments, theory, and simulations
,”
J. Chem. Phys.
140
,
094901
(
2014
).
40.
V. A.
Levashov
, “
Crystalline structures of particles interacting through the harmonic-repulsive pair potential
,”
J. Chem. Phys.
147
,
114503
(
2017
).
41.
N.
Xu
, “
Phase behaviors of soft-core particle systems
,”
Chin. J. Polym. Sci.
37
,
1065
1082
(
2019
).
42.
A.
Martín-Molina
and
M.
Quesada-Pérez
, “
A review of coarse-grained simulations of nanogel and microgel particles
,”
J. Mol. Liq.
280
,
374
381
(
2019
).
43.
V. A.
Levashov
,
R.
Ryltsev
, and
N.
Chtchelkatchev
, “
Anomalous behavior and structure of a liquid of particles interacting through the harmonic-repulsive pair potential near the crystallization transition
,”
Soft Matter
15
,
8840
8854
(
2019
).
44.
V. A.
Levashov
,
R. E.
Ryltsev
, and
N. M.
Chtchelkatchev
, “
Structure of the simple harmonic-repulsive system in liquid and glassy states studied by the triple correlation function
,”
J. Condens. Matter Phys.
33
,
025403
(
2020
).
45.
K. P.
Santo
and
A. V.
Neimark
, “
Dissipative particle dynamics simulations in colloid and interface science: A review
,”
Adv. Colloid Interface Sci.
298
,
102545
(
2021
).
46.
A.
Eskandari Nasrabad
, “
Thermodynamic and transport properties of the Weeks–Chandler–Andersen fluid: Theory and computer simulation
,”
J. Chem. Phys.
129
,
244508
(
2008
).
47.
A.
Ahmed
and
R. J.
Sadus
, “
Phase diagram of the Weeks–Chandler–Andersen potential from very low to high temperatures and pressures
,”
Phys. Rev. E
80
,
061101
(
2009
).
48.
D.
Ben-Amotz
and
G.
Stell
, “
Reformulation of Weeks–Chandler–Andersen perturbation theory directly in terms of a hard-sphere reference system
,”
J. Phys. Chem. B
108
,
6877
6882
(
2004
).
49.
R.
Benjamin
and
J.
Horbach
, “
Crystal growth kinetics in Lennard-Jones and Weeks–Chandler–Andersen systems along the solid–liquid coexistence line
,”
J. Chem. Phys.
143
,
014702
(
2015
).
50.
L.-C.
Valdès
,
J.
Gerges
,
T.
Mizuguchi
, and
F.
Affouard
, “
Crystallization tendencies of modelled Lennard-Jones liquids with different attractions
,”
J. Chem. Phys.
148
,
014501
(
2018
).
51.
A.
Banerjee
and
D. J.
Wales
, “
Energy landscapes for a modified repulsive Weeks–Chandler–Andersen potential
,”
J. Condens. Matter Phys.
34
,
034004
(
2021
).
52.
Y.
Zhou
,
B.
Mei
, and
K. S.
Schweizer
, “
Activated relaxation in supercooled monodisperse atomic and polymeric WCA fluids: Simulation and ECNLE theory
,”
J. Chem. Phys.
156
,
114901
(
2022
).
53.
E.
Attia
,
J. C.
Dyre
, and
U. R.
Pedersen
, “
Comparing four hard-sphere approximations for the low-temperature WCA melting line
,”
J. Chem. Phys.
157
,
034502
(
2022
).
54.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
Europhys. Lett.
19
,
155
(
1992
).
55.
R. D.
Groot
and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
,
4423
4435
(
1997
).
56.
C. S.
O’Hern
,
L. E.
Silbert
,
A. J.
Liu
, and
S. R.
Nagel
, “
Jamming at zero temperature and zero applied stress: The epitome of disorder
,”
Phys. Rev. E
68
,
011306
(
2003
).
57.
P.
Español
and
P. B.
Warren
, “
Perspective: Dissipative particle dynamics
,”
J. Chem. Phys.
146
,
150901
(
2017
).
58.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
59.
Y.
Zhou
,
B.
Mei
, and
K. S.
Schweizer
, “
Integral equation theory of thermodynamics, pair structure, and growing static length scale in metastable hard sphere and Weeks–Chandler–Andersen fluids
,”
Phys. Rev. E
101
,
042121
(
2020
).
60.
S.
Toxvaerd
and
J. C.
Dyre
, “
Communication: Shifted forces in molecular dynamics
,”
J. Chem. Phys.
134
,
081102
(
2011
).
61.
B. J.
Alder
and
T. E.
Wainwright
, “
Phase transition for a hard sphere system
,”
J. Chem. Phys.
27
,
1208
1209
(
1957
).
62.
W. W.
Wood
and
J. D.
Jacobson
, “
Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres
,”
J. Chem. Phys.
27
,
1207
1208
(
1957
).
63.
B. J.
Alder
and
T. E.
Wainwright
, “
Studies in molecular dynamics. I. General method
,”
J. Chem. Phys.
31
,
459
466
(
1959
).
64.
B. J.
Alder
and
T. E.
Wainwright
, “
Studies in molecular dynamics. II. Behavior of a small number of elastic spheres
,”
J. Chem. Phys.
33
,
1439
1451
(
1960
).
65.
L. A.
Fernández
,
V.
Martín-Mayor
,
B.
Seoane
, and
P.
Verrocchio
, “
Equilibrium fluid-solid coexistence of hard spheres
,”
Phys. Rev. Lett.
108
,
165701
(
2012
).
66.
J. W.
Dufty
, “
Stress tensor and elastic properties for hard and soft spheres
,”
Granul. Matter
14
,
271
275
(
2011
).
67.
S.
Khrapak
, “
Elastic properties of dense hard-sphere fluids
,”
Phys. Rev. E
100
,
032138
(
2019
).
68.
S.
Khrapak
,
N. P.
Kryuchkov
,
L. A.
Mistryukova
, and
S. O.
Yurchenko
, “
From soft- to hard-sphere fluids: Crossover evidenced by high-frequency elastic moduli
,”
Phys. Rev. E
103
,
052117
(
2021
).
69.
U. R.
Pedersen
, “
Direct calculation of the solid–liquid Gibbs free energy difference in a single equilibrium simulation
,”
J. Chem. Phys.
139
,
104102
(
2013
).
70.
U. R.
Pedersen
,
F.
Hummel
,
G.
Kresse
,
G.
Kahl
, and
C.
Dellago
, “
Computing Gibbs free energy differences by interface pinning
,”
Phys. Rev. B
88
,
094101
(
2013
).
71.
U. R.
Pedersen
,
F.
Hummel
, and
C.
Dellago
, “
Computing the crystal growth rate by the interface pinning method
,”
J. Chem. Phys.
142
,
044104
(
2015
).
72.
D. A.
Kofke
, “
Gibbs–Duhem integration: A new method for direct evaluation of phase coexistence by molecular simulation
,”
Mol. Phys.
78
,
1331
1336
(
1993
).
73.
D. A.
Kofke
, “
Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line
,”
J. Chem. Phys.
98
,
4149
4162
(
1993
).
74.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation : From Algorithms to Applications
,
2nd ed.
(
Academic Press
,
San Diego
,
2002
).
75.
L.-F.
Zhu
,
J.
Janssen
,
S.
Ishibashi
,
F.
Körmann
,
B.
Grabowski
, and
J.
Neugebauer
, “
A fully automated approach to calculate the melting temperature of elemental crystals
,”
Comput. Mater. Sci.
187
,
110065
(
2021
).
76.
F. H.
Stillinger
, “
Phase transitions in the Gaussian core system
,”
J. Chem. Phys.
65
,
3968
3974
(
1976
).
77.
U. R.
Pedersen
,
A. K.
Bacher
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
The EXP pair-potential system. III. Thermodynamic phase diagram
,”
J. Chem. Phys.
150
,
174501
(
2019
).
78.
J. C.
Pàmies
,
A.
Cacciuto
, and
D.
Frenkel
, “
Phase diagram of Hertzian spheres
,”
J. Chem. Phys.
131
,
044514
(
2009
).
79.
W.
Ouyang
,
C.
Fu
,
Z.
Sun
, and
S.
Xu
, “
Polymorph selection and nucleation pathway in the crystallization of Hertzian spheres
,”
Phys. Rev. E
94
,
042805
(
2016
).
80.
L.
Athanasopoulou
and
P.
Ziherl
, “
Phase diagram of elastic spheres
,”
Soft Matter
13
,
1463
1471
(
2017
).
81.
G.
Munaò
and
F.
Saija
, “
Monte Carlo simulation and integral equation study of Hertzian spheres in the low-temperature regime
,”
J. Chem. Phys.
151
,
134901
(
2019
).
82.
N.
Grønbech-Jensen
and
O.
Farago
, “
Constant pressure and temperature discrete-time Langevin molecular dynamics
,”
J. Chem. Phys.
141
,
194108
(
2014
).
83.
N.
Grønbech-Jensen
,
N.
Robert Hayre
, and
O.
Farago
, “
Application of the G-JF discrete-time thermostat for fast and accurate molecular simulations
,”
Comput. Phys. Commun.
185
,
524
527
(
2014
).
84.
N.
Bailey
,
T.
Ingebrigtsen
,
J. S.
Hansen
,
A.
Veldhorst
,
L.
Bøhling
,
C.
Lemarchand
,
A.
Olsen
,
A.
Bacher
,
L.
Costigliola
,
U. R.
Pedersen
,
H.
Larsen
,
J. C.
Dyre
, and
T. B.
Schrøder
, “
RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles
,”
SciPost Phys.
3
,
038
(
2017
).
85.
U. R.
Pedersen
,
N. P.
Bailey
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Strong pressure-energy correlations in van der Waals liquids
,”
Phys. Rev. Lett.
100
,
015701
(
2008
).
86.
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Pressure-energy correlations in liquids. I. Results from computer simulations
,”
J. Chem. Phys.
129
,
184507
(
2008
).
87.
J. C.
Dyre
, “
Hidden scale invariance in condensed matter
,”
J. Phys. Chem. B
118
,
10007
10024
(
2014
).
88.
J. C.
Dyre
, “
Isomorph theory of physical aging
,”
J. Chem. Phys.
148
,
154502
(
2018
).
89.
T.
Maimbourg
and
J.
Kurchan
, “
Approximate scale invariance in particle systems: A large-dimensional justification
,”
Europhys. Lett.
114
,
60002
(
2016
).
90.
L.
Bøhling
,
N. P.
Bailey
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Estimating the density-scaling exponent of a monatomic liquid from its pair potential
,”
J. Chem. Phys.
140
,
124510
(
2014
).
You do not currently have access to this content.