How dense objects, particles, atoms, and molecules can be packed is intimately related to the properties of the corresponding hosts and macrosystems. We present results from extensive Monte Carlo simulations on maximally compressed packings of linear, freely jointed chains of tangent hard spheres of uniform size in films whose thickness is equal to the monomer diameter. We demonstrate that fully flexible chains of hard spheres can be packed as efficiently as monomeric analogs, within a statistical tolerance of less than 1%. The resulting ordered polymer morphology corresponds to an almost perfect hexagonal triangular (TRI) crystal of the p6m wallpaper group, whose sites are occupied by the chain monomers. The Flory scaling exponent, which corresponds to the maximally dense polymer packing in 2D, has a value of ν = 0.62, which lies between the limits of 0.50 (compact and collapsed state) and 0.75 (self-avoiding random walk).

1.
W.
Weaire
and
T.
Aste
,
The Pursuit of Perfect Packing
(
Taylor & Francis
,
New York
,
2008
).
2.
J.
Conway
and
N.
Sloane
,
Sphere Packings, Lattices and Groups
(
Springer Verlag
,
New York
,
1998
).
3.
S.
Torquato
and
F. H.
Stillinger
, “
Jammed hard-particle packings: From Kepler to Bernal and beyond
,”
Rev. Mod. Phys.
82
,
2633
2672
(
2010
).
4.
T. C.
Hales
,
J.
Harrison
,
S.
McLaughlin
,
T.
Nipkow
,
S.
Obua
, and
R.
Zumkeller
, “
A revision of the proof of the Kepler conjecture
,”
Discrete Comput. Geom.
44
,
1
34
(
2010
).
5.
T.
Hales
,
M.
Adams
,
G.
Bauer
,
T. D.
Dang
,
J.
Harrison
,
L. T.
Hoang
,
C.
Kaliszyk
,
V.
Magron
,
S.
McLaughlin
,
T. T.
Nguyen
,
Q. T.
Nguyen
,
T.
Nipkow
,
S.
Obua
,
J.
Pleso
,
J.
Rute
,
A.
Solovyev
,
T. H. A.
Ta
,
N. T.
Tran
,
T. D.
Trieu
,
J.
Urban
,
K.
Vu
, and
R.
Zumkeller
, “
A formal proof of the Kepler conjecture
,”
Forum Math. Pi
5
,
e2
(
2017
).
6.
M. S.
Viazovska
, “
The sphere packing problem in dimension 8
,”
Ann. Math.
185
,
991
1015
(
2017
).
7.
H.
Cohn
,
A.
Kumar
,
S. D.
Miller
,
D.
Radchenko
, and
M.
Viazovska
, “
The sphere packing problem in dimension 24
,”
Ann. Math.
185
,
1017
1033
(
2017
).
8.
A.
Donev
,
S.
Torquato
,
F. H.
Stillinger
, and
R.
Connelly
, “
Jamming in hard sphere and disk packings
,”
J. Appl. Phys.
95
,
989
999
(
2004
).
9.
S.
Torquato
,
T. M.
Truskett
, and
P. G.
Debenedetti
, “
Is random close packing of spheres well defined?
,”
Phys. Rev. Lett.
84
,
2064
2067
(
2000
).
10.
S.
Torquato
and
F. H.
Stillinger
, “
Multiplicity of generation, selection, and classification procedures for jammed hard-particle packings
,”
J. Phys. Chem. B
105
,
11849
11853
(
2001
).
11.
J. D.
Bernal
, “
Geometry of the structure of monatomic liquids
,”
Nature
185
,
68
70
(
1960
).
12.
J. D.
Bernal
and
J. L.
Finney
, “
Random close-packed hard-sphere model.II. Geometry of random packing of hard spheres
,”
Discuss. Faraday Soc.
43
,
62
69
(
1967
).
13.
G. D.
Scott
,
K. R.
Knight
,
J. D.
Bernal
, and
J.
Mason
, “
Radial distribution of random close packing of equal spheres
,”
Nature
194
,
956
957
(
1962
).
14.
C. S.
O’Hern
,
L. E.
Silbert
,
A. J.
Liu
, and
S. R.
Nagel
, “
Jamming at zero temperature and zero applied stress: The epitome of disorder
,”
Phys. Rev. E
68
,
011306
(
2003
).
15.
C.
Song
,
P.
Wang
, and
H. A.
Makse
, “
A phase diagram for jammed matter
,”
Nature
453
,
629
632
(
2008
).
16.
A.
Baule
,
F.
Morone
,
H. J.
Herrmann
, and
H. A.
Makse
, “
Edwards statistical mechanics for jammed granular matter
,”
Rev. Mod. Phys.
90
,
015006
(
2018
).
17.
K.
Wang
,
C. M.
Song
,
P.
Wang
, and
H. A.
Makse
, “
Edwards thermodynamics of the jamming transition for frictionless packings: Ergodicity test and role of angoricity and compactivity
,”
Phys. Rev. E
86
,
011305
(
2012
).
18.
M.
van Hecke
, “
Jamming of soft particles: Geometry, mechanics, scaling and isostaticity
,”
J. Phys.: Condens. Matter
22
,
033101
(
2010
).
19.
G.
Parisi
and
F.
Zamponi
, “
Mean-field theory of hard sphere glasses and jamming
,”
Rev. Mod. Phys.
82
,
789
845
(
2010
).
20.
P.
Rissone
,
E. I.
Corwin
, and
G.
Parisi
, “
Long-range anomalous decay of the correlation in jammed packings
,”
Phys. Rev. Lett.
127
,
038001
(
2021
).
21.
A.
Donev
,
S.
Torquato
,
F. H.
Stillinger
, and
R.
Connelly
, “
A linear programming algorithm to test for jamming in hard-sphere packings
,”
J. Comput. Phys.
197
,
139
166
(
2004
).
22.
P.
Ballesta
,
A.
Duri
, and
L.
Cipelletti
, “
Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition
,”
Nat. Phys.
4
,
550
554
(
2008
).
23.
A.
Donev
,
F. H.
Stillinger
, and
S.
Torquato
, “
Unexpected density fluctuations in jammed disordered sphere packings
,”
Phys. Rev. Lett.
95
,
090604
(
2005
).
24.
Y. L.
Jin
,
J. G.
Puckett
, and
H. A.
Makse
, “
Statistical theory of correlations in random packings of hard particles
,”
Phys. Rev. E
89
,
052207
(
2014
).
25.
A.
Zaccone
, “
Explicit analytical solution for random close packing in d=2 and d=3
,”
Phys. Rev. Lett.
128
,
028002
(
2022
).
26.
R.
Blumenfeld
, “
Disorder criterion and explicit solution for the disc random packing problem
,”
Phys. Rev. Lett.
127
,
118002
(
2021
).
27.
S.
Atkinson
,
F. H.
Stillinger
, and
S.
Torquato
, “
Existence of isostatic, maximally random jammed monodisperse hard-disk packings
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
18436
18441
(
2014
).
28.
S.
Atkinson
,
Y.
Jiao
, and
S.
Torquato
, “
Maximally dense packings of two-dimensional convex and concave noncircular particles
,”
Phys. Rev. E
86
,
031302
(
2012
).
29.
S.
Torquato
and
Y.
Jiao
, “
Robust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming
,”
Phys. Rev. E
82
,
061302
(
2010
).
30.
J. A.
Anderson
,
J.
Antonaglia
,
J. A.
Millan
,
M.
Engel
, and
S. C.
Glotzer
, “
Shape and symmetry determine two-dimensional melting transitions of hard regular polygons
,”
Phys. Rev. X
7
,
021001
(
2017
).
31.
A.
Donev
,
F. H.
Stillinger
, and
S.
Torquato
, “
Do binary hard disks exhibit an ideal glass transition?
,”
Phys. Rev. Lett.
96
,
225502
(
2006
).
32.
N.
Xu
,
J.
Blawzdziewicz
, and
C. S.
O’Hern
, “
Random close packing revisited: Ways to pack frictionless disks
,”
Phys. Rev. E
71
,
061306
(
2005
).
33.
F. H.
Stillinger
,
R. L.
Kornegay
, and
E. A.
Dimarzio
, “
Systematic approach to explanation of rigid disk phase transition
,”
J. Chem. Phys.
40
,
1564
1576
(
1964
).
34.
W. M.
Visscher
and
M.
Bolsterl
, “
Random packing of equal and unequal spheres in two and three dimensions
,”
Nature
239
,
504
(
1972
).
35.
E. L.
Hinrichsen
,
J.
Feder
, and
T.
Jøssang
, “
Random packing of disks in two dimensions
,”
Phys. Rev. A
41
,
4199
4209
(
1990
).
36.
S.
Meyer
,
C.
Song
,
Y.
Jin
,
K.
Wang
, and
H. A.
Makse
, “
Jamming in two-dimensional packings
,”
Physica A
389
,
5137
5144
(
2010
).
37.
T.
Unger
,
J.
Kertesz
, and
D. E.
Wolf
, “
Force indeterminacy in the jammed state of hard disks
,”
Phys. Rev. Lett.
94
,
178001
(
2005
).
38.
B. I.
Halperin
and
D. R.
Nelson
, “
Theory of two-dimensional melting
,”
Phys. Rev. Lett.
41
,
121
124
(
1978
).
39.
D. R.
Nelson
and
B. I.
Halperin
, “
Dislocation-mediated melting in two dimensions
,”
Phys. Rev. B
19
,
2457
2484
(
1979
).
40.
A. L.
Thorneywork
,
J. L.
Abbott
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
, “
Two-dimensional melting of colloidal hard spheres
,”
Phys. Rev. Lett.
118
,
158001
(
2017
).
41.
M. A.
Bates
and
D.
Frenkel
, “
Influence of vacancies on the melting transition of hard disks in two dimensions
,”
Phys. Rev. E
61
,
5223
5227
(
2000
).
42.
E. P.
Bernard
and
W.
Krauth
, “
Two-step melting in two dimensions: First-order liquid-hexatic transition
,”
Phys. Rev. Lett.
107
,
155704
(
2011
).
43.
M.
Engel
,
J. A.
Anderson
,
S. C.
Glotzer
,
M.
Isobe
,
E. P.
Bernard
, and
W.
Krauth
, “
Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods
,”
Phys. Rev. E
87
,
042134
(
2013
).
44.
J. A.
Forrest
and
K.
Dalnoki-Veress
, “
The glass transition in thin polymer films
,”
Adv. Colloid Interface Sci.
94
,
167
196
(
2001
).
45.
M. D.
Ediger
and
J. A.
Forrest
, “
Dynamics near free surfaces and the glass transition in thin polymer films: A view to the future
,”
Macromolecules
47
,
471
478
(
2014
).
46.
B.
Li
,
S.
Zhang
,
J. S.
Andre
, and
Z.
Chen
, “
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement
,”
Prog. Polym. Sci.
120
,
101431
(
2021
).
47.
Y.-X.
Liu
and
E.-Q.
Chen
, “
Polymer crystallization of ultrathin films on solid substrates
,”
Coord. Chem. Rev.
254
,
1011
1037
(
2010
).
48.
N. C.
Karayiannis
and
M.
Laso
, “
Dense and nearly jammed random packings of freely jointed chains of tangent hard spheres
,”
Phys. Rev. Lett.
100
,
050602
(
2008
).
49.
M.
Laso
,
N. C.
Karayiannis
,
K.
Foteinopoulou
,
M. L.
Mansfield
, and
M.
Kröger
, “
Random packing of model polymers: Local structure, topological hindrance and universal scaling
,”
Soft Matter
5
,
1762
1770
(
2009
).
50.
N. C.
Karayiannis
,
K.
Foteinopoulou
, and
M.
Laso
, “
Contact network in nearly jammed disordered packings of hard-sphere chains
,”
Phys. Rev. E
80
,
011307
(
2009
).
51.
N. C.
Karayiannis
,
K.
Foteinopoulou
, and
M.
Laso
, “
The structure of random packings of freely jointed chains of tangent hard spheres
,”
J. Chem. Phys.
130
,
164908
(
2009
).
52.
K.
Foteinopoulou
,
N. C.
Karayiannis
,
M.
Laso
,
M.
Kroger
, and
M. L.
Mansfield
, “
Universal scaling, entanglements, and knots of model chain molecules
,”
Phys. Rev. Lett.
101
,
265702
(
2008
).
53.
N. C.
Karayiannis
,
K.
Foteinopoulou
, and
M.
Laso
, “
Entropy-driven crystallization in dense systems of athermal chain molecules
,”
Phys. Rev. Lett.
103
,
045703
(
2009
).
54.
N. C.
Karayiannis
,
K.
Foteinopoulou
, and
M.
Laso
, “
The role of bond tangency and bond gap in hard sphere crystallization of chains
,”
Soft Matter
11
,
1688
1700
(
2015
).
55.
M.
Herranz
,
K.
Foteinopoulou
,
N. C.
Karayiannis
, and
M.
Laso
, “
Polymorphism and perfection in crystallization of hard sphere polymers
,”
Polymers
14
,
4435
(
2022
).
56.
M. D.
Rintoul
and
S.
Torquato
, “
Metastability and crystallization in hard-sphere systems
,”
Phys. Rev. Lett.
77
,
4198
4201
(
1996
).
57.
N. C.
Karayiannis
,
R.
Malshe
,
M.
Kröger
,
J. J.
de Pablo
, and
M.
Laso
, “
Evolution of fivefold local symmetry during crystal nucleation and growth in dense hard-sphere packings
,”
Soft Matter
8
,
844
858
(
2012
).
58.
N. N.
Medvedev
,
A.
Bezrukov
, and
D.
Shtoyan
, “
From amorphous solid to defective crystal. A study of structural peculiarities in close packings of hard spheres
,”
J. Struct. Chem.
45
,
S23
S30
(
2004
).
59.
B.
O’Malley
and
I.
Snook
, “
Crystal nucleation in the hard sphere system
,”
Phys. Rev. Lett.
90
,
085702
(
2003
).
60.
S.
Auer
and
D.
Frenkel
, “
Prediction of absolute crystal-nucleation rate in hard-sphere colloids
,”
Nature
409
,
1020
1023
(
2001
).
61.
I.
Sanchez-Burgos
,
E.
Sanz
,
C.
Vega
, and
J. R.
Espinosa
, “
Fcc vs. hcp competition in colloidal hard-sphere nucleation: On their relative stability, interfacial free energy and nucleation rate
,”
Phys. Chem. Chem. Phys.
23
,
19611
19626
(
2021
).
62.
J. C.
Gaines
,
W. W.
Smith
,
L.
Regan
, and
C. S.
O’Hern
, “
Random close packing in protein cores
,”
Phys. Rev. E
93
,
032415
(
2016
).
63.
A. T.
Grigas
,
Z.
Mei
,
J. D.
Treado
,
Z. A.
Levine
,
L.
Regan
, and
C. S.
O’Hern
, “
Using physical features of protein core packing to distinguish real proteins from decoys
,”
Protein Sci.
29
,
1931
1944
(
2020
).
64.
J. C.
Gaines
,
A. H.
Clark
,
L.
Regan
, and
C. S.
O’Hern
, “
Packing in protein cores
,”
J. Phys.: Condens. Matter
29
,
293001
(
2017
).
65.
M.
Herranz
,
D.
Martínez-Fernández
,
P. M.
Ramos
,
K.
Foteinopoulou
,
N. C.
Karayiannis
, and
M.
Laso
, “
Simu-D: A simulator-descriptor suite for polymer-based systems under extreme conditions
,”
Int. J. Mol. Sci.
22
,
12464
(
2021
).
66.
P. M.
Ramos
,
N. C.
Karayiannis
, and
M.
Laso
, “
Off-lattice simulation algorithms for athermal chain molecules under extreme confinement
,”
J. Comput. Phys.
375
,
918
934
(
2018
).
67.
M.
Herranz
,
M.
Santiago
,
K.
Foteinopoulou
,
N. C.
Karayiannis
, and
M.
Laso
, “
Crystal, fivefold and glass formation in clusters of polymers interacting with the square well potential
,”
Polymers
12
,
1111
(
2020
).
68.
N. C.
Karayiannis
and
M.
Laso
, “
Monte Carlo scheme for generation and relaxation of dense and nearly jammed random structures of freely jointed hard-sphere chains
,”
Macromolecules
41
,
1537
1551
(
2008
).
69.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics Modell.
14
,
33
38
(
1996
).
70.
N. C.
Karayiannis
,
K.
Foteinopoulou
, and
M.
Laso
, “
The characteristic crystallographic element norm: A descriptor of local structure in atomistic and particulate systems
,”
J. Chem. Phys.
130
,
074704
(
2009
).
71.
P. M.
Ramos
,
M.
Herranz
,
K.
Foteinopoulou
,
N. C.
Karayiannis
, and
M.
Laso
, “
Identification of local structure in 2-D and 3-D atomic systems through crystallographic analysis
,”
Crystals
10
,
1008
(
2020
).
72.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
Ithaca
,
2010
).
73.
A. D.
Schlüter
,
P.
Payamyar
, and
H. C.
Öttinger
, “
How the world changes by going from one- to two-dimensional polymers in solution
,”
Macromol. Rapid Commun.
37
,
1638
1650
(
2016
).
74.
P.
deGennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1980
).
75.
V.
Baranau
and
U.
Tallarek
, “
Random-close packing limits for monodisperse and polydisperse hard spheres
,”
Soft Matter
10
,
3826
3841
(
2014
).
You do not currently have access to this content.