Clathrate hydrates are crystalline inclusion compounds wherein a water framework encages small guest atoms/molecules within its cavities. Among the others, methane clathrates are the largest fossil fuel resource still available. They can also be used to safely transport gases and can also form spontaneously under suitable conditions plugging pipelines. Understanding the crystallization mechanism is very important, and given the impossibility of experimentally identifying the atomistic path, simulations played an important role in this field. Given the large computational cost of these simulations, in addition to all-atom force fields, scientists considered coarse-grained water models. Here, we have investigated the effect of coarse-graining, as implemented in the water model mW, on the crystallization characteristics of methane clathrate in comparison with the all-atom TIP4P force field. Our analyses revealed that although the characteristics directly depending on the energetics of the water models are well reproduced, dynamical properties are off by the orders of magnitude. Being crystallization a non-equilibrium process, the altered kinetics of the process results in different characteristics of crystalline nuclei. Both TIP4P and mW water models produce methane clathrate nuclei with some amount of the less stable (in the given thermodynamic conditions) structure II phase and an excess of pentagonal dodecahedral cages over the tetrakaidecahedral ones regarding the ideal ratio in structure I. However, the dependence of this excess on the methane concentration in solution is higher with the former water model, whereas with the latter, the methane concentration in solution dependence is reduced and within the statistical error.

1.
Y. F.
Makogon
,
Hydrates of Hydrocarbons
(
PennWell Publishing Co.
,
Tulsa, OK
,
1997
).
2.
E. D.
Sloan
, Jr.
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
(
CRC Press
,
2007
).
3.
G. J.
MacDonald
,
Annu. Rev. Energy
15
,
53
83
(
1990
).
4.
K. A.
Kvenvolden
,
Chem. Geol.
71
,
41
51
(
1988
).
5.
N. J.
English
and
J. M. D.
MacElroy
,
Chem. Eng. Sci.
121
,
133
156
(
2015
).
6.
P.
Warrier
,
M. N.
Khan
,
V.
Srivastava
,
C. M.
Maupin
, and
C. A.
Koh
,
J. Chem. Phys.
145
,
211705
(
2016
).
7.
E. D.
Sloan
, Jr.
and
F.
Fleyfel
,
AIChE J.
37
,
1281
1292
(
1991
).
8.
G.-J.
Guo
,
Y.-G.
Zhang
,
Y.-J.
Zhao
,
K.
Refson
, and
G.-H.
Shan
,
J. Chem. Phys.
121
,
1542
1547
(
2004
).
9.
G.-J.
Guo
,
Y.-G.
Zhang
,
M.
Li
, and
C.-H.
Wu
,
J. Chem. Phys.
128
,
194504
(
2008
).
10.
R.
Radhakrishnan
and
B. L.
Trout
,
J. Chem. Phys.
117
,
1786
1796
(
2002
).
11.
G.-J.
Guo
,
M.
Li
,
Y.-G.
Zhang
, and
C.-H.
Wu
,
Phys. Chem. Chem. Phys.
11
,
10427
10437
(
2009
).
12.
G.-J.
Guo
and
P. M.
Rodger
,
J. Phys. Chem. B
117
,
6498
6504
(
2013
).
13.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
,
J. Phys. Chem. B
113
,
10298
10307
(
2009
).
14.
N. J.
English
,
M.
Lauricella
, and
S.
Meloni
,
J. Chem. Phys.
140
204714
(
2014
).
15.
E. D.
Sloan
,
Nature
426
,
353
359
(
2003
).
16.
I.
Chatti
,
A.
Delahaye
,
L.
Fournaison
, and
J.-P.
Petitet
,
Energy Convers. Manage.
46
,
1333
1343
(
2005
).
17.
S.
Sarupria
and
P. G.
Debenedetti
,
J. Phys. Chem. Lett.
3
,
2942
2947
(
2012
).
18.
M.
Lauricella
,
G.
Ciccotti
,
N. J.
English
,
B.
Peters
, and
S.
Meloni
,
J. Phys. Chem. C
121
,
24223
24234
(
2017
).
19.
M.
Lauricella
,
S.
Meloni
,
N. J.
English
,
B.
Peters
, and
G.
Ciccotti
,
J. Phys. Chem. C
118
,
22847
22857
(
2014
).
20.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
,
Science
326
,
1095
1098
(
2009
).
21.
L. C.
Jacobson
and
V.
Molinero
,
J. Am. Chem. Soc.
133
,
6458
6463
(
2011
).
22.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
,
J. Phys. Chem. C
115
,
21241
21248
(
2011
).
23.
J. A.
Ripmeester
and
S.
Alavi
,
ChemPhysChem
11
,
978
980
(
2010
).
24.
K. W.
Hall
,
S.
Carpendale
, and
P. G.
Kusalik
,
Proc. Natl. Acad. Sci.
113
,
12041
12046
(
2016
).
25.
M.
Lauricella
,
S.
Meloni
,
S.
Liang
,
N. J.
English
,
P. G.
Kusalik
, and
G.
Ciccotti
,
J. Chem. Phys.
142
,
244503
(
2015
).
26.
M.
Lauricella
,
M. R.
Ghaani
,
P. K.
Nandi
,
S.
Meloni
,
B.
Kvamme
, and
N. J.
English
,
J. Phys. Chem. C
126
,
6075
6081
(
2022
).
27.
S.
Bonella
,
S.
Meloni
, and
G.
Ciccotti
,
Eur. Phys. J. B
85
,
97
(
2012
).
28.
Y.
Bi
and
T.
Li
,
J. Phys. Chem. B
118
,
13324
13332
(
2014
).
29.
Y.
Bi
,
A.
Porras
, and
T.
Li
,
J. Chem. Phys.
145
,
211909
(
2016
).
30.
E.
Małolepsza
and
T.
Keyes
,
J. Phys. Chem. B
119
,
15857
15865
(
2015
).
31.
Y. P.
Handa
,
J. Phys. Chem.
94
,
2652
2657
(
1990
).
32.
S.
Orlandini
,
S.
Meloni
, and
G.
Ciccotti
,
Phys. Chem. Chem. Phys.
13
,
13177
13181
(
2011
).
33.
M.
Pourali
,
S.
Meloni
,
F.
Magaletti
,
A.
Maghari
,
C. M.
Casciola
, and
G.
Ciccotti
,
J. Chem. Phys.
141
,
154107
(
2014
).
34.
G.
Ciccotti
and
M.
Ferrario
,
Mol. Simul.
42
,
1385
1400
(
2016
).
35.
S.
Xu
,
D.
Cao
,
Y.
Liu
, and
Y.
Wang
,
Cryst. Growth Des.
22
,
2001
2022
(
2021
).
36.
D.
Moroni
,
T. S.
van Erp
, and
P. G.
Bolhuis
,
Physica A
340
,
395
401
(
2004
).
37.
T. S.
Van Erp
and
P. G.
Bolhuis
,
J. Comput. Phys.
205
,
157
181
(
2005
).
38.
R. J.
Allen
,
C.
Valeriani
, and
P.
Rein ten Wolde
,
J. Phys.: Condens. Matter
21
,
463102
(
2009
).
39.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
6271
(
1987
).
40.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
935
(
1983
).
41.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
,
4008
4016
(
2009
).
42.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
43.
M. E.
Johnson
,
T.
Head-Gordon
, and
A. A.
Louis
,
J. Chem. Phys.
126
,
144509
(
2007
).
44.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
,
J. Phys. Chem. B
114
,
13796
13807
(
2010
).
45.
L. C.
Jacobson
and
V.
Molinero
,
J. Phys. Chem. B
114
,
7302
7311
(
2010
).
46.
M.
Sprik
and
G.
Ciccotti
,
J. Chem. Phys.
109
,
7737
7744
(
1998
).
47.
G.
Ciccotti
and
M.
Ferrario
,
Mol. Simul.
30
,
787
793
(
2004
).
48.
L.
Maragliano
and
E.
Vanden-Eijnden
,
Chem. Phys. Lett.
426
,
168
175
(
2006
).
49.
G.
Ciccotti
and
S.
Meloni
,
Phys. Chem. Chem. Phys.
13
,
5952
5959
(
2011
).
50.
S.
Meloni
and
G.
Ciccotti
,
Eur. Phys. J.: Spec. Top.
224
,
2389
2407
(
2015
).
51.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
2643
(
1992
).
52.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
53.
E.
Weinan
and
E.
Vanden-Eijnden
,
Annu. Rev. Phys. Chem.
61
,
391
420
(
2010
).
54.
O.
Valsson
,
P.
Tiwary
, and
M.
Parrinello
,
Annu. Rev. Phys. Chem.
67
,
159
184
(
2016
).
55.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
,
J. Chem. Phys.
120
,
9665
9678
(
2004
).
56.
H. W.
Horn
,
W. C.
Swope
, and
J. W.
Pitera
,
J. Chem. Phys.
123
,
194504
(
2005
).
57.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
58.
J.-Y.
Wu
,
L.-J.
Chen
,
Y.-P.
Chen
, and
S.-T.
Lin
J. Phys. Chem. C
119
,
1400
1409
(
2015
).
59.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
J. Phys. Chem. C
120
,
21512
21521
(
2016
).
60.
E.
Heidaryan
,
P.
de Alcântara Pessôa Filho
, and
M. D. R.
Fuentes
,
J. Low Temp. Phys.
207
,
227
240
(
2022
).
61.
Y.
Iwai
and
R.
Aokawa
,
Mol. Simul.
41
,
735
740
(
2015
).
62.
S.
Das
,
V. S.
Baghel
,
S.
Roy
, and
R.
Kumar
,
Phys. Chem. Chem. Phys.
17
,
9509
9518
(
2015
).
63.
H.
Nada
and
J. P. J. M.
van der Eerden
,
J. Chem. Phys.
118
,
7401
7413
(
2003
).
64.
J.
Wu
,
F.
Ning
,
T. T.
Trinh
,
S.
Kjelstrup
,
T. J. H.
Vlugt
,
J.
He
,
B. H.
Skallerud
, and
Z.
Zhang
,
Nat. Commun.
6
,
8743
(
2015
).
65.
G.
Bussi
,
T.
Zykova-Timan
, and
M.
Parrinello
,
J. Chem. Phys.
130
,
074101
(
2009
).
66.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
7190
(
1981
).
67.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
25
(
2015
).
68.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
,
Comput. Phys. Commun.
185
,
604
613
(
2014
).
69.
K. F.
Kelton
and
A. L.
Greer
,
Nucleation in Condensed Matter: Applications in Materials and Biology
(
Elsevier
,
2010
)
70.
P. G.
Debenedetti
,
Metastable Liquids Metastable Liquids
(
Princeton University Press
,
2021
).
71.
J.
Wedekind
,
R.
Strey
, and
D.
Reguera
,
J. Chem. Phys.
126
,
134103
(
2007
).
72.
Z. K.
Nagy
,
M.
Fujiwara
,
X. Y.
Woo
, and
R. D.
Braatz
,
Ind. Eng. Chem. Res.
47
,
1245
1252
(
2008
).
73.
X. J.
Liu
,
D.
Xu
,
M. J.
Ren
,
G. H.
Zhang
,
X. Q.
Wei
, and
J.
Wang
,
Cryst. Growth Des.
10
,
3442
3447
(
2010
).
74.
W.
Lechner
,
C.
Dellago
, and
P. G.
Bolhuis
,
J. Chem. Phys.
135
,
154110
(
2011
).
75.
P. M.
Rodger
,
T. R.
Forester
, and
W.
Smith
,
Fluid Phase Equilib.
116
,
326
332
(
1996
).
76.
P.
Mark Rodger
,
Ann. N. Y. Acad. Sci.
912
,
474
482
(
2000
).
77.
P.
Rein ten Wolde
,
M. J.
Ruiz‐Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
9947
(
1996
).
78.
Y.
Chen
,
S.
Takeya
, and
A. K.
Sum
,
J. Phys. Chem. Lett.
13
,
8673
8676
(
2022
).
79.
Arjun
,
T. A.
berendsen
, and
P. G.
Bolhius
, “
Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates
,”
Proc. Nat. Acad. Sci.
116
(
39
),
19305
19310
(
2019
).
80.
We estimated the solubility of methane in mW and TIP4P water models in the two-phase liquid/gas metastable system at the simulation conditions to be χ CH 4 0.002 and 0.0065 ,31 respectively. Similarly, one expects that large fluctuations allowing to achieve high local supersaturation anticipating the formation of clathrate nuclei are more likely with TIP4P than mW. Our dynamical non-equilibrium approach, with trajectories starting from phase space points consistent with prescribed methane concentrations, allows us to overcome this problem/difference between force fields, focusing on the effect of coarse-graining on the second part of the crystallization mechanism.
81.
In the classical nucleation theory (and its extensions), the nucleation time is proportional to the exponential of the free energy barrier ΔG(n) (see inset of Fig. 3): t ∝ exp[ΔG(n)/kBT], with kBT thermal energy of the system.
82.
To take into account the contemporary presence of sI and sII domains, the numerator is modified by considering the number of 512 cages that would be engaged with 51262 and 51264 cages in sI and sII clathrate hydrate unit cells. Indeed, the quantity reported in Fig. 7(b) is ( n 5 12 2 × # sI unit cells ) / n 5 12 6 2 .
You do not currently have access to this content.