We present recent developments of the NTChem program for performing large scale hybrid density functional theory calculations on the supercomputer Fugaku. We combine these developments with our recently proposed complexity reduction framework to assess the impact of basis set and functional choice on its measures of fragment quality and interaction. We further exploit the all electron representation to study system fragmentation in various energy envelopes. Building off this analysis, we propose two algorithms for computing the orbital energies of the Kohn–Sham Hamiltonian. We demonstrate that these algorithms can efficiently be applied to systems composed of thousands of atoms and as an analysis tool that reveals the origin of spectral properties.

1.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
3.
W.
Kohn
, “
Density functional and density matrix method scaling linearly with the number of atoms
,”
Phys. Rev. Lett.
76
,
3168
3171
(
1996
).
4.
D. R.
Bowler
and
T.
Miyazaki
, “
O(N) methods in electronic structure calculations
,”
Rep. Prog. Phys.
75
,
036503
(
2012
).
5.
L. E.
Ratcliff
,
S.
Mohr
,
G.
Huhs
,
T.
Deutsch
,
M.
Masella
, and
L.
Genovese
, “
Challenges in large scale quantum mechanical calculations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1290
(
2017
).
6.
J. C.
Burant
,
G. E.
Scuseria
, and
M. J.
Frisch
, “
A linear scaling method for Hartree–Fock exchange calculations of large molecules
,”
J. Chem. Phys.
105
,
8969
8972
(
1996
).
7.
E.
Schwegler
and
M.
Challacombe
, “
Linear scaling computation of the Hartree–Fock exchange matrix
,”
J. Chem. Phys.
105
,
2726
2734
(
1996
).
8.
E.
Schwegler
,
M.
Challacombe
, and
M.
Head-Gordon
, “
Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build
,”
J. Chem. Phys.
106
,
9708
9717
(
1997
).
9.
C.
Ochsenfeld
,
C. A.
White
, and
M.
Head-Gordon
, “
Linear and sublinear scaling formation of Hartree–Fock-type exchange matrices
,”
J. Chem. Phys.
109
,
1663
1669
(
1998
).
10.
J.
Kussmann
and
C.
Ochsenfeld
, “
Pre-selective screening for matrix elements in linear-scaling exact exchange calculations
,”
J. Chem. Phys.
138
,
134114
(
2013
).
11.
W.
Dawson
,
A.
Degomme
,
M.
Stella
,
T.
Nakajima
,
L. E.
Ratcliff
, and
L.
Genovese
, “
Density functional theory calculations of large systems: Interplay between fragments, observables, and computational complexity
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1574
(
2022
).
12.
S.
Mohr
,
M.
Masella
,
L. E.
Ratcliff
, and
L.
Genovese
, “
Complexity reduction in large quantum systems: Fragment identification and population analysis via a local optimized minimal basis
,”
J. Chem. Theory Comput.
13
,
4079
4088
(
2017
).
13.
W.
Dawson
,
S.
Mohr
,
L. E.
Ratcliff
,
T.
Nakajima
, and
L.
Genovese
, “
Complexity reduction in density functional theory calculations of large systems: System partitioning and fragment embedding
,”
J. Chem. Theory Comput.
16
,
2952
2964
(
2020
).
14.
L. E.
Ratcliff
,
W.
Dawson
,
G.
Fisicaro
,
D.
Caliste
,
S.
Mohr
,
A.
Degomme
,
B.
Videau
,
V.
Cristiglio
,
M.
Stella
,
M.
D’Alessandro
,
S.
Goedecker
,
T.
Nakajima
,
T.
Deutsch
, and
L.
Genovese
, “
Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations
,”
J. Chem. Phys.
152
,
194110
(
2020
).
15.
H. T. H.
Chan
,
M. A.
Moesser
,
R. K.
Walters
,
T. R.
Malla
,
R. M.
Twidale
,
T.
John
,
H. M.
Deeks
,
T.
Johnston-Wood
,
V.
Mikhailov
,
R. B.
Sessions
,
W.
Dawson
,
E.
Salah
,
P.
Lukacik
,
C.
Strain-Damerell
,
C. D.
Owen
,
T.
Nakajima
,
K.
Świderek
,
A.
Lodola
,
V.
Moliner
,
D. R.
Glowacki
,
J.
Spencer
,
M. A.
Walsh
,
C. J.
Schofield
,
L.
Genovese
,
D. K.
Shoemark
,
A. J.
Mulholland
,
F.
Duarte
, and
G. M.
Morris
, “
Discovery of SARS-CoV-2 Mpro peptide inhibitors from modelling substrate and ligand binding
,”
Chem. Sci.
12
,
13686
13703
(
2021
).
16.
M.
Zaccaria
,
L.
Genovese
,
W.
Dawson
,
V.
Cristiglio
,
T.
Nakajima
,
W.
Johnson
,
M.
Farzan
, and
B.
Momeni
, “
Probing the mutational landscape of the SARS-CoV-2 spike protein via quantum mechanical modeling of crystallographic structures
,”
PNAS Nexus
1
,
pgac180
(
2022
).
17.
T.
Nakajima
,
M.
Katouda
,
M.
Kamiya
, and
Y.
Nakatsuka
, “
NTChem: A high-performance software package for quantum molecular simulation
,”
Int. J. Quantum Chem.
115
,
349
359
(
2015
).
18.
M.
Benzi
,
P.
Boito
, and
N.
Razouk
, “
Decay properties of spectral projectors with applications to electronic structure
,”
SIAM Rev.
55
,
3
64
(
2013
).
19.
D. J.
Chadi
, “
Localized-orbital description of wave functions and energy bands in semiconductors
,”
Phys. Rev. B
16
,
3572
3578
(
1977
).
20.
D.
Sanchez-Portal
,
E.
Artacho
, and
J. M.
Soler
, “
Projection of plane-wave calculations into atomic orbitals
,”
Solid State Commun.
95
,
685
690
(
1995
).
21.
J.
Aarons
,
L. G.
Verga
,
N. D. M.
Hine
, and
C.-K.
Skylaris
, “
Atom-projected and angular momentum resolved density of states in the ONETEP code
,”
Electron. Struct.
1
,
035002
(
2019
).
22.
W.
Dawson
,
K.
Sawada
,
M.
Kamiya
, and
T.
Nakajima
, “
Development of a software package for molecular electronic structure calculation “NTChem” towards supercomputer Fugaku
,”
J. Jpn. Soc. Simul. Technol.
38
(
2
),
87
93
(
2019
).
23.
K.
Ishimura
and
S.
Nagase
, “
A new algorithm of two-electron repulsion integral calculations: A combination of Pople–Hehre and McMurchie–Davidson methods
,”
Theor. Chem. Acc.
120
,
185
189
(
2008
).
24.
J.
Kussmann
and
C.
Ochsenfeld
, “
Preselective screening for linear-scaling exact exchange-gradient calculations for graphics processing units and general strong-scaling massively parallel calculations
,”
J. Chem. Theory Comput.
11
,
918
922
(
2015
).
25.
M.
Häser
and
R.
Ahlrichs
, “
Improvements on the direct SCF method
,”
J. Comput. Chem.
10
,
104
111
(
1989
).
26.
K.
Ishimura
,
K.
Kuramoto
,
Y.
Ikuta
, and
S.-a.
Hyodo
, “
MPI/OpenMP hybrid parallel algorithm for Hartree–Fock calculations
,”
J. Chem. Theory Comput.
6
,
1075
1080
(
2010
).
27.
V.
Mironov
,
Y.
Alexeev
,
K.
Keipert
,
M.
D’mello
,
A.
Moskovsky
, and
M. S.
Gordon
, “
An efficient MPI/openMP parallelization of the Hartree-Fock method for the second generation of Intel Xeon PhiTM processor
,” in
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE
,
2017
), pp.
1
12
.
28.
V.
Mironov
,
A.
Moskovsky
,
M.
D’Mello
, and
Y.
Alexeev
, “
An efficient MPI/OpenMP parallelization of the Hartree–Fock–Roothaan method for the first generation of Intel Xeon PhiTM processor architecture
,”
Int. J. High Perform. Comput. Appl.
33
,
212
224
(
2019
).
29.
I. T.
Foster
,
J. L.
Tilson
,
A. F.
Wagner
,
R. L.
Shepard
,
R. J.
Harrison
,
R. A.
Kendall
, and
R. J.
Littlefield
, “
Toward high-performance computational chemistry: I. Scalable Fock matrix construction algorithms
,”
J. Comput. Chem.
17
,
109
123
(
1996
).
30.
T. R.
Furlani
,
J.
Kong
, and
P. M. W.
Gill
, “
Parallelization of SCF calculations within Q-Chem
,”
Comput. Phys. Commun.
128
,
170
177
(
2000
).
31.
Y.
Alexeev
,
R. A.
Kendall
, and
M. S.
Gordon
, “
The distributed data SCF
,”
Comput. Phys. Commun.
143
,
69
82
(
2002
).
32.
H.
Umeda
,
Y.
Inadomi
,
T.
Watanabe
,
T.
Yagi
,
T.
Ishimoto
,
T.
Ikegami
,
H.
Tadano
,
T.
Sakurai
, and
U.
Nagashima
, “
Parallel Fock matrix construction with distributed shared memory model for the FMO-MO method
,”
J. Comput. Chem.
31
,
2381
2388
(
2010
).
33.
X.
Liu
,
A.
Patel
, and
E.
Chow
, “
A new scalable parallel algorithm for Fock matrix construction
,” in
2014 IEEE 28th International Parallel and Distributed Processing Symposium
(
IEEE
,
2014
), pp.
902
914
.
34.
E.
Chow
,
X.
Liu
,
S.
Misra
,
M.
Dukhan
,
M.
Smelyanskiy
,
J. R.
Hammond
,
Y.
Du
,
X.-K.
Liao
, and
P.
Dubey
, “
Scaling up Hartree–Fock calculations on Tianhe-2
,”
Int. J. High Perform. Comput. Appl.
30
,
85
102
(
2016
).
35.
E.
Aprà
,
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
H. J. J.
van Dam
,
Y.
Alexeev
,
J.
Anchell
,
V.
Anisimov
,
F. W.
Aquino
,
R.
Atta-Fynn
,
J.
Autschbach
,
N. P.
Bauman
,
J. C.
Becca
,
D. E.
Bernholdt
,
K.
Bhaskaran-Nair
,
S.
Bogatko
,
P.
Borowski
,
J.
Boschen
,
J.
Brabec
,
A.
Bruner
,
E.
Cauët
,
Y.
Chen
,
G. N.
Chuev
,
C. J.
Cramer
,
J.
Daily
,
M. J. O.
Deegan
,
T. H.
Dunning
,
M.
Dupuis
,
K. G.
Dyall
,
G. I.
Fann
,
S. A.
Fischer
,
A.
Fonari
,
H.
Früchtl
,
L.
Gagliardi
,
J.
Garza
,
N.
Gawande
,
S.
Ghosh
,
K.
Glaesemann
,
A. W.
Götz
,
J.
Hammond
,
V.
Helms
,
E. D.
Hermes
,
K.
Hirao
,
S.
Hirata
,
M.
Jacquelin
,
L.
Jensen
,
B. G.
Johnson
,
H.
Jónsson
,
R. A.
Kendall
,
M.
Klemm
,
R.
Kobayashi
,
V.
Konkov
,
S.
Krishnamoorthy
,
M.
Krishnan
,
Z.
Lin
,
R. D.
Lins
,
R. J.
Littlefield
,
A. J.
Logsdail
,
K.
Lopata
,
W.
Ma
,
A. V.
Marenich
,
J.
Martin del Campo
,
D.
Mejia-Rodriguez
,
J. E.
Moore
,
J. M.
Mullin
,
T.
Nakajima
,
D. R.
Nascimento
,
J. A.
Nichols
,
P. J.
Nichols
,
J.
Nieplocha
,
A.
Otero-de-la-Roza
,
B.
Palmer
,
A.
Panyala
,
T.
Pirojsirikul
,
B.
Peng
,
R.
Peverati
,
J.
Pittner
,
L.
Pollack
,
R. M.
Richard
,
P.
Sadayappan
,
G. C.
Schatz
,
W. A.
Shelton
,
D. W.
Silverstein
,
D. M. A.
Smith
,
T. A.
Soares
,
D.
Song
,
M.
Swart
,
H. L.
Taylor
,
G. S.
Thomas
,
V.
Tipparaju
,
D. G.
Truhlar
,
K.
Tsemekhman
,
T.
Van Voorhis
,
Á.
Vázquez-Mayagoitia
,
P.
Verma
,
O.
Villa
,
A.
Vishnu
,
K. D.
Vogiatzis
,
D.
Wang
,
J. H.
Weare
,
M. J.
Williamson
,
T. L.
Windus
,
K.
Woliński
,
A. T.
Wong
,
Q.
Wu
,
C.
Yang
,
Q.
Yu
,
M.
Zacharias
,
Z.
Zhang
,
Y.
Zhao
, and
R. J.
Harrison
, “
NWChem: Past, present, and future
,”
J. Chem. Phys.
152
,
184102
(
2020
).
36.
H.
Huang
,
C. D.
Sherrill
, and
E.
Chow
, “
Techniques for high-performance construction of Fock matrices
,”
J. Chem. Phys.
152
,
024122
(
2020
).
37.
W.
Dawson
and
T.
Nakajima
, “
Massively parallel sparse matrix function calculations with NTPoly
,”
Comput. Phys. Commun.
225
,
154
165
(
2018
).
38.
T.
Imamura
,
S.
Yamada
, and
M.
Machida
, “
Development of a high performance eigensolver on the petascale next generation supercomputer system
,”
Prog. Nucl. Sci. Technol.
2
,
643
650
(
2011
).
39.
A. M. N.
Niklasson
,
C. J.
Tymczak
, and
M.
Challacombe
, “
Trace resetting density matrix purification in O(N) self-consistent-field theory
,”
J. Chem. Phys.
118
,
8611
8620
(
2003
).
40.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
New basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
4820
(
2019
).
41.
P. G.
Mezey
, “
Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape–activity relations
,”
Acc. Chem. Res.
47
,
2821
2827
(
2014
).
42.
N. M.
O’Boyle
,
M.
Banck
,
C. A.
James
,
C.
Morley
,
T.
Vandermeersch
, and
G. R.
Hutchison
, “
Open Babel: An open chemical toolbox
,”
J. Cheminf.
3
,
33
(
2011
).
43.
M. M.
Teeter
, “
Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin
,”
Proc. Natl. Acad. Sci. U. S. A.
81
,
6014
6018
(
1984
).
44.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
, “
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
,”
J. Comput. Chem.
21
,
1049
1074
(
2000
).
45.
V.
Hornak
,
R.
Abel
,
A.
Okur
,
B.
Strockbine
,
A.
Roitberg
, and
C.
Simmerling
, “
Comparison of multiple amber force fields and development of improved protein backbone parameters
,”
Proteins: Struct., Funct., Bioinf.
65
,
712
725
(
2006
).
46.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
et al, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
47.
F.
Jensen
, “
Unifying general and segmented contracted basis sets. segmented polarization consistent basis sets
,”
J. Chem. Theory Comput.
10
,
1074
1085
(
2014
).
48.
S.
Lehtola
, “
Assessment of initial guesses for self-consistent field calculations. superposition of atomic potentials: Simple yet efficient
,”
J. Chem. Theory Comput.
15
,
1593
1604
(
2019
).
49.
P.
Pulay
, “
Improved scf convergence acceleration
,”
J. Comput. Chem.
3
,
556
560
(
1982
).
50.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
51.
P. M. W.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
, “
A standard grid for density functional calculations
,”
Chem. Phys. Lett.
209
,
506
512
(
1993
).
52.
R.
van Leeuwen
and
E. J.
Baerends
, “
Exchange-correlation potential with correct asymptotic behavior
,”
Phys. Rev. A
49
,
2421
2431
(
1994
).
53.
M. E.
Casida
and
D. R.
Salahub
, “
Asymptotic correction approach to improving approximate exchange–correlation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra
,”
J. Chem. Phys.
113
,
8918
8935
(
2000
).
54.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
, “
Tuned range-separated hybrids in density functional theory
,”
Annu. Rev. Phys. Chem.
61
,
85
109
(
2010
).
55.
T.
Tsuneda
,
J.-W.
Song
,
S.
Suzuki
, and
K.
Hirao
, “
On Koopmans’ theorem in density functional theory
,”
J. Chem. Phys.
133
,
174101
(
2010
).
56.
O. V.
Gritsenko
,
Ł. M.
Mentel
, and
E. J.
Baerends
, “
On the errors of local density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham potential and orbital energies
,”
J. Chem. Phys.
144
,
204114
(
2016
).
57.
A. M.
Teale
,
T.
Helgaker
,
A.
Savin
,
C.
Adamo
,
B.
Aradi
,
A. V.
Arbuznikov
,
P. W.
Ayers
,
E. J.
Baerends
,
V.
Barone
,
P.
Calaminici
,
E.
Cancès
,
E. A.
Carter
,
P. K.
Chattaraj
,
H.
Chermette
,
I.
Ciofini
,
T. D.
Crawford
,
F.
De Proft
,
J. F.
Dobson
,
C.
Draxl
,
T.
Frauenheim
,
E.
Fromager
,
P.
Fuentealba
,
L.
Gagliardi
,
G.
Galli
,
J.
Gao
,
P.
Geerlings
,
N.
Gidopoulos
,
P. M. W.
Gill
,
P.
Gori-Giorgi
,
A.
Görling
,
T.
Gould
,
S.
Grimme
,
O.
Gritsenko
,
H. J. A.
Jensen
,
E. R.
Johnson
,
R. O.
Jones
,
M.
Kaupp
,
A. M.
Köster
,
L.
Kronik
,
A. I.
Krylov
,
S.
Kvaal
,
A.
Laestadius
,
M.
Levy
,
M.
Lewin
,
S.
Liu
,
P.-F.
Loos
,
N. T.
Maitra
,
F.
Neese
,
J. P.
Perdew
,
K.
Pernal
,
P.
Pernot
,
P.
Piecuch
,
E.
Rebolini
,
L.
Reining
,
P.
Romaniello
,
A.
Ruzsinszky
,
D. R.
Salahub
,
M.
Scheffler
,
P.
Schwerdtfeger
,
V. N.
Staroverov
,
J.
Sun
,
E.
Tellgren
,
D. J.
Tozer
,
S. B.
Trickey
,
C. A.
Ullrich
,
A.
Vela
,
G.
Vignale
,
T. A.
Wesolowski
,
X.
Xu
, and
W.
Yang
, “
DFT exchange: Sharing perspectives on the workhorse of quantum chemistry and materials science
,”
Phys. Chem. Chem. Phys.
24
,
28700
28781
(
2022
).
58.
K.
Hirao
,
T.
Nakajima
,
B.
Chan
,
J.-W.
Song
, and
H.-S.
Bae
, “
Core-level excitation energies of nucleic acid bases expressed as orbital energies of the Kohn–Sham density functional theory with long-range corrected functionals
,”
J. Phys. Chem. A
124
,
10482
10494
(
2020
).
59.
K.
Hirao
,
H.-S.
Bae
,
J.-W.
Song
, and
B.
Chan
, “
Koopmans’-type theorem in Kohn–Sham theory with optimally tuned long-range-corrected (LC) functionals
,”
J. Phys. Chem. A
125
,
3489
3502
(
2021
).
60.
K.
Hirao
,
H.-S.
Bae
,
J.-W.
Song
, and
B.
Chan
, “
Vertical ionization potential benchmarks from Koopmans prediction of Kohn–Sham theory with long-range corrected (LC) functional
,”
J. Phys.: Condens. Matter
34
,
194001
(
2022
).
61.
K.
Hirao
,
T.
Nakajima
, and
B.
Chan
, “
An improved Slater’s transition state approximation
,”
J. Chem. Phys.
155
,
034101
(
2021
).
62.
B.
Chan
,
W.
Dawson
,
T.
Nakajima
, and
K.
Hirao
, “
Taking advantage of a systematic energy non-linearity error in density functional theory for the calculation of electronic energy levels
,”
J. Phys. Chem. A
125
,
10507
10513
(
2021
).
63.
P.
Norman
and
A.
Dreuw
, “
Simulating x-ray spectroscopies and calculating core-excited states of molecules
,”
Chem. Rev.
118
,
7208
7248
(
2018
).
64.
S.
Mohr
,
W.
Dawson
,
M.
Wagner
,
D.
Caliste
,
T.
Nakajima
, and
L.
Genovese
, “
Efficient computation of sparse matrix functions for large-scale electronic structure calculations: The CheSS library
,”
J. Chem. Theory Comput.
13
,
4684
4698
(
2017
).
65.
A.
Kruchinina
,
E.
Rudberg
, and
E. H.
Rubensson
, “
On-the-fly computation of frontal orbitals in density matrix expansions
,”
J. Chem. Theory Comput.
14
,
139
153
(
2018
).
66.
L.
Lin
,
Y.
Saad
, and
C.
Yang
, “
Approximating spectral densities of large matrices
,”
SIAM Rev.
58
,
34
65
(
2016
).
67.
V.
Hernandez
,
J. E.
Roman
, and
V.
Vidal
, “
SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems
,”
ACM Trans. Math. Softw.
31
,
351
362
(
2005
).
68.
D. B.
Williams-Young
,
P. G.
Beckman
, and
C.
Yang
, “
A shift selection strategy for parallel shift-invert spectrum slicing in symmetric self-consistent eigenvalue computation
,”
ACM Trans. Math. Softw.
46
,
1
(
2020
).
69.
D. B.
Williams-Young
and
C.
Yang
, “
Parallel shift-invert spectrum slicing on distributed architectures with GPU accelerators
,” in
49th International Conference on Parallel Processing-ICPP, ICPP ’20
(
Association for Computing Machinery
,
New York
,
2020
).
70.
D.
Lee
,
T.
Hoshi
,
T.
Sogabe
,
Y.
Miyatake
, and
S.-L.
Zhang
, “
Solution of the k-th eigenvalue problem in large-scale electronic structure calculations
,”
J. Comput. Phys.
371
,
618
632
(
2018
).
71.
E.
Polizzi
, “
Density-matrix-based algorithm for solving eigenvalue problems
,”
Phys. Rev. B
79
,
115112
(
2009
).
72.
A.
Nakata
,
Y.
Futamura
,
T.
Sakurai
,
D. R.
Bowler
, and
T.
Miyazaki
, “
Efficient calculation of electronic structure using O(N) density functional theory
,”
J. Chem. Theory Comput.
13
,
4146
4153
(
2017
).
73.
A.
Marek
,
V.
Blum
,
R.
Johanni
,
V.
Havu
,
B.
Lang
,
T.
Auckenthaler
,
A.
Heinecke
,
H.-J.
Bungartz
, and
H.
Lederer
, “
The ELPA library: Scalable parallel eigenvalue solutions for electronic structure theory and computational science
,”
J. Phys.: Condens. Matter
26
,
213201
(
2014
).
74.
J.
Winkelmann
,
P.
Springer
, and
E. D.
Napoli
, “
Chase: Chebyshev accelerated subspace iteration eigensolver for sequences of hermitian eigenvalue problems
,”
ACM Trans. Math. Softw.
45
,
1
(
2019
).
75.
F.
Aquilante
,
T.
Bondo Pedersen
,
A.
Sánchez de Merás
, and
H.
Koch
, “
Fast noniterative orbital localization for large molecules
,”
J. Chem. Phys.
125
,
174101
(
2006
).
76.
Y.
Nakatsukasa
and
N. J.
Higham
, “
Stable and efficient spectral divide and conquer algorithms for the symmetric eigenvalue decomposition and the SVD
,”
SIAM J. Sci. Comput.
35
,
A1325
A1349
(
2013
).
77.
P.
Motamarri
,
V.
Gavini
,
K.
Bhattacharya
, and
M.
Ortiz
, “
Spectrum-splitting approach for fermi-operator expansion in all-electron Kohn-Sham DFT calculations
,”
Phys. Rev. B
95
,
035111
(
2017
).
78.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
Packmol: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
79.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
80.
S.
Huzinaga
,
J.
Andzelm
,
E.
Radzio-Andzelm
,
Y.
Sakai
,
H.
Tatewaki
, and
M.
Klobukowski
,
Gaussian Basis Sets for Molecular Calculations
(
Elsevier
,
2012
).
81.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
82.
D.
Rappoport
and
F.
Furche
, “
Property-optimized Gaussian basis sets for molecular response calculations
,”
J. Chem. Phys.
133
,
134105
(
2010
).
83.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
84.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
85.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
86.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
87.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
88.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
89.
Y.
Zhao
and
D. G.
Truhlar
, “
A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
,”
J. Chem. Phys.
125
,
194101
(
2006
).
90.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
91.
A.
Willand
,
Y. O.
Kvashnin
,
L.
Genovese
,
Á.
Vázquez-Mayagoitia
,
A. K.
Deb
,
A.
Sadeghi
,
T.
Deutsch
, and
S.
Goedecker
, “
Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations
,”
J. Chem. Phys.
138
,
104109
(
2013
).
92.
Schrödinger, LLC
,
The PyMOL molecular graphics system, version 1.8
,
2015
, pyMOL The PyMOL Molecular Graphics System, Version 1.8,
Schrödinger, LLC
.
93.
O.
Schütt
and
J.
VandeVondele
, “
Machine learning adaptive basis sets for efficient large scale density functional theory simulation
,”
J. Chem. Theory Comput.
14
,
4168
4175
(
2018
).
94.
F.
Corsetti
,
M.-V.
Fernández-Serra
,
J. M.
Soler
, and
E.
Artacho
, “
Optimal finite-range atomic basis sets for liquid water and ice
,”
J. Phys.: Condens. Matter
25
,
435504
(
2013
).
95.
E.
Sim
,
S.
Song
,
S.
Vuckovic
, and
K.
Burke
, “
Improving results by improving densities: Density-corrected density functional theory
,”
J. Am. Chem. Soc.
144
,
6625
6639
(
2022
).
96.
M. G.
Medvedev
,
I. S.
Bushmarinov
,
J.
Sun
,
J. P.
Perdew
, and
K. A.
Lyssenko
, “
Density functional theory is straying from the path toward the exact functional
,”
Science
355
,
49
52
(
2017
).
97.
L. E.
Ratcliff
,
A.
Degomme
,
J. A.
Flores-Livas
,
S.
Goedecker
, and
L.
Genovese
, “
Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers
,”
J. Phys.: Condens. Matter
30
,
095901
(
2018
).
98.
D.
Golze
,
J.
Wilhelm
,
M. J.
van Setten
, and
P.
Rinke
, “
Core-level binding energies from GW: An efficient full-frequency approach within a localized basis
,”
J. Chem. Theory Comput.
14
,
4856
4869
(
2018
).
99.
S.
Honda
,
K.
Yamasaki
,
Y.
Sawada
, and
H.
Morii
, “
10 residue folded peptide designed by segment statistics
,”
Structure
12
,
1507
1518
(
2004
).
100.
S.
Jo
,
T.
Kim
,
V. G.
Iyer
, and
W.
Im
, “
CHARMM-GUI: A web-based graphical user interface for CHARMM
,”
J. Comput. Chem.
29
,
1859
1865
(
2008
).
101.
S.
Jo
,
X.
Cheng
,
S. M.
Islam
,
L.
Huang
,
H.
Rui
,
A.
Zhu
,
H. S.
Lee
,
Y.
Qi
,
W.
Han
,
K.
Vanommeslaeghe
,
A. D.
MacKerell
,
B.
Roux
, and
W.
Im
, “
Chapter eight–CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues
,” in
Advances in Protein Chemistry and Structural Biology, Biomolecular Modelling and Simulations
(
Academic Press
,
2014
), Vol. 96, pp.
235
265
.
102.
J.
Lee
,
X.
Cheng
,
J. M.
Swails
,
M. S.
Yeom
,
P. K.
Eastman
,
J. A.
Lemkul
,
S.
Wei
,
J.
Buckner
,
J. C.
Jeong
,
Y.
Qi
,
S.
Jo
,
V. S.
Pande
,
D. A.
Case
,
C. L.
Brooks
III
,
A. D.
MacKerell
, Jr.
,
J. B.
Klauda
, and
W.
Im
, “
CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field
,”
J. Chem. Theory Comput.
12
,
405
413
(
2016
).
103.
J.
Lee
,
M.
Hitzenberger
,
M.
Rieger
,
N. R.
Kern
,
M.
Zacharias
, and
W.
Im
, “
CHARMM-GUI supports the amber force fields
,”
J. Chem. Phys.
153
,
035103
(
2020
).

Supplementary Material

You do not currently have access to this content.