Strategies for multiple-level parallelizations of quantum-mechanical calculations are discussed, with an emphasis on using groups of workers for performing parallel tasks. These parallel programming models can be used for a variety ab initio quantum chemistry approaches, including the fragment molecular orbital method and replica-exchange molecular dynamics. Strategies for efficient load balancing on problems of increasing granularity are introduced and discussed. A four-level parallelization is developed based on a multi-level hierarchical grouping, and a high parallel efficiency is achieved on the Theta supercomputer using 131 072 OpenMP threads.
REFERENCES
1.
A. V.
Akimov
and O. V.
Prezhdo
, “Large-scale computations in chemistry: A bird’s eye view of a vibrant field
,” Chem. Rev.
115
, 5797
–5890
(2015
).2.
K.
Kowalski
, R.
Bair
, N. P.
Bauman
, J. S.
Boschen
, E. J.
Bylaska
, J.
Daily
, W. A.
de Jong
, T.
Dunning
, Jr., N.
Govind
, R. J.
Harrison
, M.
Keçeli
, K.
Keipert
, S.
Krishnamoorthy
, S.
Kumar
, E.
Mutlu
, B.
Palmer
, A.
Panyala
, B.
Peng
, R. M.
Richard
, T. P.
Straatsma
, P.
Sushko
, E. F.
Valeev
, M.
Valiev
, H. J. J.
van Dam
, J. M.
Waldrop
, D. B.
Williams-Young
, C.
Yang
, M.
Zalewski
, and T. L.
Windus
, “From NWChem to NWChemEx: Evolving with the computational chemistry landscape
,” Chem. Rev.
121
, 4962
–4998
(2021
).3.
T.
Nakajima
, M.
Katouda
, M.
Kamiya
, and Y.
Nakatsuka
, “NTChem: A high-performance software package for quantum molecular simulation
,” Int. J. Quantum Chem.
115
, 349
–359
(2015
).4.
H.
Kitoh-Nishioka
, H.
Umeda
, and Y.
Shigeta
, “Open-architecture program of fragment molecular orbital method for massive parallel computing (OpenFMO) with GPU acceleration
,” in Recent Advances of the Fragment Molecular Orbital Method
, edited by Y.
Mochizuki
, S.
Tanaka
, and K.
Fukuzawa
(Springer
, Singapore
, 2021
), pp. 77
–90
.5.
K.
Ishimura
, “Development of massively parallel quantum chemistry program SMASH
,” AIP Conf. Proc.
1702
, 090053
(2015
).6.
F.
Aquilante
, J.
Autschbach
, A.
Baiardi
, S.
Battaglia
, V. A.
Borin
, L. F.
Chibotaru
, I.
Conti
, L.
De Vico
, M.
Delcey
, I. F.
Galván
, N.
Ferré
, L.
Freitag
, M.
Garavelli
, X.
Gong
, S.
Knecht
, E. D.
Larsson
, R.
Lindh
, M.
Lundberg
, P. Å.
Malmqvist
, A.
Nenov
, J.
Norell
, M.
Odelius
, M.
Olivucci
, T. B.
Pedersen
, L.
Pedraza-González
, Q. M.
Phung
, K.
Pierloot
, M.
Reiher
, I.
Schapiro
, J.
Segarra-Martí
, F.
Segatta
, L.
Seijo
, S.
Sen
, D.-C.
Sergentu
, C. J.
Stein
, L.
Ungur
, M.
Vacher
, A.
Valentini
, and V.
Veryazov
, “Modern quantum chemistry with [Open]Molcas
,” J. Chem. Phys.
152
, 214117
(2020
).7.
M. S.
Gordon
, S. R.
Pruitt
, D. G.
Fedorov
, and L. V.
Slipchenko
, “Fragmentation methods: A route to accurate calculations on large systems
,” Chem. Rev.
112
, 632
–672
(2012
).8.
D. G.
Fedorov
, R. M.
Olson
, K.
Kitaura
, M. S.
Gordon
, and S.
Koseki
, “A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO)
,” J. Comput. Chem.
25
, 872
–880
(2004
).9.
Y.
Mochizuki
, K.
Yamashita
, T.
Murase
, T.
Nakano
, K.
Fukuzawa
, K.
Takematsu
, H.
Watanabe
, and S.
Tanaka
, “Large scale FMO-MP2 calculations on a massively parallel-vector computer
,” Chem. Phys. Lett.
457
, 396
–403
(2008
).10.
Y.
Mochizuki
, T.
Nakano
, K.
Sakakura
, Y.
Okiyama
, H.
Watanabe
, K.
Kato
, Y.
Akinaga
, S.
Sato
, J.-i.
Yamamoto
, K.
Yamashita
, T.
Murase
, T.
Ishikawa
, Y.
Komeiji
, Y.
Kato
, N.
Watanabe
, T.
Tsukamoto
, H.
Mori
, K.
Okuwaki
, S.
Tanaka
, A.
Kato
, C.
Watanabe
, and K.
Fukuzawa
, “The ABINIT-MP program
,” in Recent Advances of the Fragment Molecular Orbital Method
, edited by Y.
Mochizuki
, S.
Tanaka
, and K.
Fukuzawa
(Springer
, Singapore
, 2021
), pp. 53
–67
.11.
K.
Takaba
, C.
Watanabe
, A.
Tokuhisa
, Y.
Akinaga
, B.
Ma
, R.
Kanada
, M.
Araki
, Y.
Okuno
, Y.
Kawashima
, H.
Moriwaki
, N.
Kawashita
, T.
Honma
, K.
Fukuzawa
, and S.
Tanaka
, “Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy
,” J. Comput. Chem.
43
, 1362
–1371
(2022
).12.
S.
Tanaka
, S.
Tokutomi
, R.
Hatada
, K.
Okuwaki
, K.
Akisawa
, K.
Fukuzawa
, Y.
Komeiji
, Y.
Okiyama
, and Y.
Mochizuki
, “Dynamic cooperativity of ligand-residue interactions evaluated with the fragment molecular orbital method
,” J. Phys. Chem. B
125
, 6501
–6512
(2021
).13.
M. W.
Schmidt
, K. K.
Baldridge
, J. A.
Boatz
, S. T.
Elbert
, M. S.
Gordon
, J. H.
Jensen
, S.
Koseki
, N.
Matsunaga
, K. A.
Nguyen
, S.
Su
, T. L.
Windus
, M.
Dupuis
, and J. A.
Montgomery
, “General atomic and molecular electronic structure system
,” J. Comput. Chem.
14
, 1347
(1993
).14.
M. S.
Gordon
and M. W.
Schmidt
, “Advances in electronic structure theory: GAMESS a decade later
,” in Theory and Applications of Computational Chemistry the First Forty Years
, edited by C.
Dykstra
, G.
Frenking
, K.
Kim
, and G.
Scuseria
(Elsevier Science
, Amsterdam
, 2005
), pp. 1167
–1189
.15.
G. M. J.
Barca
, C.
Bertoni
, L.
Carrington
, D.
Datta
, N.
De Silva
, J. E.
Deustua
, D. G.
Fedorov
, J. R.
Gour
, A. O.
Gunina
, E.
Guidez
, T.
Harville
, S.
Irle
, J.
Ivanic
, K.
Kowalski
, S. S.
Leang
, H.
Li
, W.
Li
, J. J.
Lutz
, I.
Magoulas
, J.
Mato
, V.
Mironov
, H.
Nakata
, B. Q.
Pham
, P.
Piecuch
, D.
Poole
, S. R.
Pruitt
, A. P.
Rendell
, L. B.
Roskop
, K.
Ruedenberg
, T.
Sattasathuchana
, M. W.
Schmidt
, J.
Shen
, L.
Slipchenko
, M.
Sosonkina
, V.
Sundriyal
, A.
Tiwari
, J. L. G.
Vallejo
, B.
Westheimer
, M.
Włoch
, P.
Xu
, F.
Zahariev
, and M. S.
Gordon
, “Recent developments in the general atomic and molecular electronic structure system
,” J. Chem. Phys.
152
, 154102
(2020
).16.
B. Q.
Pham
, M.
Alkan
, and M. S.
Gordon
, “Porting fragmentation methods to GPU using an OpenMP API: Offloading the Fock build for low angular momentum functions
” J. Chem. Theory Comput.
(published online, 2023
).17.
M.
Alkani
, B. Q.
Pham
, J. R.
Hammond
, and M. S.
Gordon
, “Enabling Fortran standard parallelism in GAMESS for accelerated quantum chemistry calculations
” (unpublished).18.
S.
Bak
, C.
Bertoni
, S.
Boehm
, R.
Budiardja
, B. M.
Chapman
, J.
Doerfert
, M.
Eisenbach
, H.
Finkel
, O.
Hernandez
, J.
Huber
, S.
Iwasaki
, V.
Kale
, P. R. C.
Kent
, J.
Kwack
, M.
Lin
, P.
Luszczek
, Y.
Luo
, B.
Pham
, S.
Pophale
, K.
Ravikumar
, V.
Sarkar
, T.
Scogland
, S.
Tian
, and P. K.
Yeung
, “OpenMP application experiences: Porting to accelerated nodes
,” Parallel Comput.
109
, 102856
(2022
).19.
B.
Chapman
, B.
Pham
, C.
Yang
, C.
Daley
, C.
Bertoni
, D.
Kulkarni
, D.
Oryspayev
, E.
D’Azevedo
, J.
Doerfert
, K.
Zhou
, K.
Ravikumar
, M.
Gordon
, M. D.
Ben
, M.
Lin
, M.
Alkan
, M.
Kruse
, O.
Hernandez
, P. K.
Yeung
, P.
Lin
, P.
, Xu
, S.
Pophale
, T.
Sattasathuchana
, V.
Kale
, W.
Huhn
, and Y.
He
, “Outcomes of OpenMP Hackathon: OpenMP application experiences with the offloading mode (Part I)
,” in Proceedings of IWOMP 2021
(Springer International Publishing
, Bristol, UK
, 2021
), pp. 67
–80
.20.
A.
Asadchev
, B. M.
Bode
, and M. S.
Gordon
, “Performance of electronic structure calculations on BG/L and XT4 computers
,” J. Comput. Theor. Nanosci.
6
, 1290
–1296
(2009
).21.
Y.
Alexeev
, A.
Mahajan
, S.
Leyffer
, G.
Fletcher
, and D. G.
Fedorov
, “Heuristic static load-balancing algorithm applied to the fragment molecular orbital method
,” in Proceedings of the International Supercomputing Conference, ISC 2012
(IEEE Computer Society
, Salt Lake City
, 2012
).22.
S. K.
Talamudupula
, M.
Sosonkina
, A.
Gaenko
, and M. W.
Schmidt
, “Fragment molecular orbital method adaptations for heterogeneous computing platforms
,” Procedia Comput. Sci.
9
, 489
–497
(2012
).23.
Y.
Ma
, Z.
Li
, X.
Chen
, B.
Ding
, N.
Li
, T.
Lu
, B.
Zhang
, B.
Suo
, and Z.
Jin
, “Machine-learning assisted scheduling optimization and its application in quantum chemical calculations
,” J. Comput. Chem.
44
, 1174
–1188
(2023
).24.
T.
Ikegami
, T.
Ishida
, D. G.
Fedorov
, K.
Kitaura
, Y.
Inadomi
, H.
Umeda
, M.
Yokokawa
, and S.
Sekiguchi
, “Full electron calculation beyond 20 000 atoms: Ground electronic state of photosynthetic proteins
,” in Proceedings of the International Supercomputing Conference, ISC 2005
(IEEE Computer Society
, 2005
).25.
D. G.
Fedorov
and K.
Kitaura
, “Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method
,” J. Chem. Phys.
122
, 054108
(2005
).26.
M.
Chiba
, D. G.
Fedorov
, and K.
Kitaura
, “Time-dependent density functional theory based upon the fragment molecular orbital method
,” J. Chem. Phys.
127
, 104108
(2007
).27.
D. G.
Fedorov
, Complete Guide to the Fragment Molecular Orbital Method in GAMESS
(World Scientific
, Singapore
, 2023
).28.
G. D.
Fletcher
, M. W.
Schmidt
, B. M.
Bode
, and M. S.
Gordon
, “The distributed data interface in GAMESS
,” Comput. Phys. Commun.
128
, 190
–200
(2000
).29.
K.
Ishimura
, K.
Kuramoto
, Y.
Ikuta
, and S.-a.
Hyodo
, “MPI/OpenMP hybrid parallel algorithm for Hartree−Fock calculations
,” J. Chem. Theory Comput.
6
, 1075
–1080
(2010
).30.
V. A.
Mironov
, Y.
Alexeev
, D. G.
Fedorov
, H.
Umeda
, S.
Pruitt
, A.
Gaenko
, and M. S.
Gordon
, “Multi-level parallelization of the fragment molecular orbital method in GAMESS
,” in Recent Advances of the Fragment Molecular Orbital Method
, edited by Y.
Mochizuki
, S.
Tanaka
, and K.
Fukuzawa
(Springer
, Singapore
, 2021
), pp. 601
–616
.31.
D. G.
Fedorov
and K.
Kitaura
, “The importance of three-body terms in the fragment molecular orbital method
,” J. Chem. Phys.
120
, 6832
–6840
(2004
).32.
D. G.
Fedorov
, “The fragment molecular orbital method: Theoretical development, implementation in GAMESS and applications
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
, e1322
(2017
).33.
C.
Steinmann
, D. G.
Fedorov
, and J. H.
Jensen
, “Effective fragment molecular orbital method: A merger of the effective fragment potential and fragment molecular orbital methods
,” J. Phys. Chem. A
114
, 8705
–8712
(2010
).34.
C.
Bertoni
and M. S.
Gordon
, “Analytic gradients for the effective fragment molecular orbital method
,” J. Chem. Theory Comput.
12
, 4743
–4767
(2016
).35.
D. G.
Fedorov
, Y.
Sugita
, and C. H.
Choi
, “Efficient parallel implementations of QM/MM-REMD (quantum mechanical/molecular mechanics-replica-exchange MD) and umbrella sampling: Isomerization of H2O2 in aqueous solution
,” J. Phys. Chem. B
117
, 7996
–8002
(2013
).36.
S.
Ito
, D. G.
Fedorov
, Y.
Okamoto
, and S.
Irle
, “Implementation of replica-exchange umbrella sampling in GAMESS
,” Comput. Phys. Commun.
228
, 152
–162
(2018
).37.
T.
Taketsugu
, K.
Yagi
, and M. S.
Gordon
, “A vibrational analysis of the 7-azaindole-water complex: Anharmonicities using the quartic force field
,” Int. J. Quantum Chem.
104
, 758
–772
(2005
).38.
B.
Njegic
and M. S.
Gordon
, “Predicting accurate vibrational frequencies for highly anharmonic systems
,” J. Chem. Phys.
129
, 164107
(2008
).39.
P.
Xu
, T.
Sattasathuchana
, E.
Guidez
, S. P.
Webb
, K.
Montgomery
, H.
Yasini
, I. F. M.
Pedreira
, and M. S.
Gordon
, “Computation of host–guest binding free energies with a new quantum mechanics based mining minima algorithm
,” J. Chem. Phys.
154
, 104122
(2021
).40.
M.
Katouda
, M.
Kobayashi
, H.
Nakai
, and S.
Nagase
, “Two-level hierarchical parallelization of second-order Møller–Plesset perturbation calculations in divide-and-conquer method
,” J. Comput. Chem.
32
, 2756
–2764
(2011
).41.
A.
Devarajan
, T. L.
Windus
, and M. S.
Gordon
, “Implementation of dynamical nucleation theory effective fragment potentials method for modeling aerosol chemistry
,” J. Phys. Chem. A
115
, 13987
–13996
(2011
).42.
A.
Devarajan
, A.
Gaenko
, M. S.
Gordon
, and T. L.
Windus
, “Nucleation using the effective fragment potential and two-level parallelism
,” in Fragmentation: Toward Accurate Calculations on Complex Molecular Systems
, edited by M. S.
Gordon
(Wiley
, Hoboken
, 2017
), pp. 209
–226
.43.
Y.
Nishimoto
, D. G.
Fedorov
, and S.
Irle
, “Third-order density-functional tight-binding combined with the fragment molecular orbital method
,” Chem. Phys. Lett.
636
, 90
–96
(2015
).44.
D. G.
Fedorov
, “Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method
,” J. Chem. Phys.
157
, 231001
(2022
).45.
V.
Mironov
, A.
Moskovsky
, M.
D’Mello
, and Y.
Alexeev
, “An efficient MPI/OpenMP parallelization of the Hartree–Fock–Roothaan method for the first generation of Intel® Xeon Phi™ processor architecture
,” Int. J. High Perform. Comput. Appl.
33
, 212
–224
(2019
).46.
V.
Mironov
, Y.
Alexeev
, and D. G.
Fedorov
, “MPI+OpenMP parallelization of DFT method in GAMESS
,” poster presentation at Supercomputing 2019, Denver. URL: https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost211s2-file2.pdf; accessed on 31 January 2023.47.
B. Q.
Pham
and M. S.
Gordon
, “Hybrid distributed/shared memory model for the RI-MP2 method in the fragment molecular orbital framework
,” J. Chem. Theory Comput.
15
, 5252
–5258
(2019
).48.
B. Q.
Pham
and M. S.
Gordon
, “Development of the FMO/RI-MP2 fully analytic gradient using a hybrid-distributed/shared memory programming model
,” J. Chem. Theory Comput.
16
, 1039
–1054
(2020
).49.
D.
Datta
and M. S.
Gordon
, “A massively parallel implementation of the CCSD(T) method using the resolution-of-the-identity approximation and a hybrid distributed/shared memory parallelization model
,” J. Chem. Theory Comput.
17
, 4799
–4822
(2021
).50.
V.
Mironov
, Y.
Alexeev
, and D. G.
Fedorov
, “Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method
,” Int. J. Quantum Chem.
119
, e25937
(2019
).51.
D. S.
Kaliakin
, D. G.
Fedorov
, Y.
Alexeev
, and S. A.
Varganov
, “Locating minimum energy crossings of different spin states using the fragment molecular orbital method
,” J. Chem. Theory Comput.
15
, 6074
–6084
(2019
).52.
S. R.
Pruitt
, S. S.
Leang
, P.
Xu
, D. G.
Fedorov
, and M. S.
Gordon
, “Hexamers and witchamers: Which hex do you choose?
,” Comput. Theor. Chem.
1021
, 70
–83
(2013
).53.
A.
Rakshit
, P.
Bandyopadhyay
, J. P.
Heindel
, and S. S.
Xantheas
, “Atlas of putative minima and low-lying energy networks of water clusters n = 3–25
,” J. Chem. Phys.
151
, 214307
(2019
).54.
A.
Gijón
and E. R.
Hernández
, “Quantum simulations of neutral water clusters and singly-charged water cluster anions
,” Phys. Chem. Chem. Phys.
24
, 14440
–14451
(2022
).55.
R.
Kusaka
, S.
Nihonyanagi
, and T.
Tahara
, “The photochemical reaction of phenol becomes ultrafast at the air–water interface
,” Nat. Chem.
13
, 306
–311
(2021
).56.
Y.
Nishimoto
, H.
Nakata
, D. G.
Fedorov
, and S.
Irle
, “Large-scale quantum- mechanical molecular dynamics simulations using density-functional tight-binding combined with the fragment molecular orbital method
,” J. Phys. Chem. Lett.
6
, 5034
–5039
(2015
).57.
M.
Gaus
, A.
Goez
, and M.
Elstner
, “Parametrization and benchmark of DFTB3 for organic molecules
,” J. Chem. Theory Comput.
9
, 338
–354
(2013
).58.
T.
Nagata
, D. G.
Fedorov
, K.
Ishimura
, and K.
Kitaura
, “Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method
,” J. Chem. Phys.
135
, 044110
(2011
).59.
G.
Barca
, C.
Snowdon
, J.
Vallejo
, F.
Kazemian
, A. P.
Rendell
, and M. S.
Gordon
, “Scaling correlated fragment molecular orbital calculations on summit
,” in Proceedings of the International Supercomputing Conference, ISC 2022
(IEEE Computer Society
, Dallas
, 2022
), pp. 72
–85
.60.
K.
Kitaura
, E.
Ikeo
, T.
Asada
, T.
Nakano
, and M.
Uebayasi
, “Fragment molecular orbital method: An approximate computational method for large molecules
,” Chem. Phys. Lett.
313
, 701
–706
(1999
).61.
K.
Fukuzawa
and S.
Tanaka
, “Fragment molecular orbital calculations for biomolecules
,” Curr. Opin. Struct. Biol.
72
, 127
–134
(2022
).62.
D. G.
Fedorov
, N.
Asada
, I.
Nakanishi
, and K.
Kitaura
“The use of many-body expansions and geometry optimizations in fragment-based methods
,” Acc. Chem. Res.
47
, 2846
–2856
(2014
).63.
S. P.
Veccham
, J.
Lee
, and M.
Head-Gordon
, “Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach
,” J. Chem. Phys.
151
, 194101
(2019
).64.
T.
Nakano
, T.
Kaminuma
, T.
Sato
, K.
Fukuzawa
, Y.
Akiyama
, M.
Uebayasi
, and K.
Kitaura
, “Fragment molecular orbital method: Use of approximate electrostatic potential
,” Chem. Phys. Lett.
351
, 475
–480
(2002
).65.
G. D.
Fletcher
, D. G.
Fedorov
, S. R.
Pruitt
, T. L.
Windus
, and M. S.
Gordon
, “Large-scale MP2 calculations on the Blue Gene architecture using the fragment molecular orbital method
,” J. Chem. Theory Comput.
8
, 75
–79
(2012
).66.
S. R.
Pruitt
, H.
Nakata
, T.
Nagata
, M.
Mayes
, Y.
Alexeev
, G.
Fletcher
, D. G.
Fedorov
, K.
Kitaura
, and M. S.
Gordon
, “Importance of three-body interactions in molecular dynamics simulations of water demonstrated with the fragment molecular orbital method
,” J. Chem. Theory Comput.
12
, 1423
–1435
(2016
).67.
Y.
Nishimoto
, D. G.
Fedorov
, and S.
Irle
, “Density-functional tight-binding combined with the fragment molecular orbital method
,” J. Chem. Theory Comput.
10
, 4801
–4812
(2014
).68.
Y.
Nishimoto
and D. G.
Fedorov
, “Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding
,” J. Chem. Phys.
148
, 064115
(2018
).69.
D. G.
Fedorov
, “Partitioning of the vibrational free energy
,” J. Phys. Chem. Lett.
12
, 6628
–6633
(2021
).70.
T.
Nakamura
, T.
Yokaichiya
, and D. G.
Fedorov
, “Analysis of guest adsorption on crystal surfaces based on the fragment molecular orbital method
,” J. Phys. Chem. A
126
, 957
–969
(2022
).71.
K.
Okuwaki
, K.
Akisawa
, R.
Hatada
, Y.
Mochizuki
, K.
Fukuzawa
, Y.
Komeiji
, and S.
Tanaka
, “Collective residue interactions in trimer complexes of SARS-CoV-2 spike proteins analyzed by fragment molecular orbital method
,” Appl. Phys. Express
15
, 017001
(2022
).72.
S.
Monteleone
, D. G.
Fedorov
, A.
Townsend-Nicholson
, M.
Southey
, M.
Bodkin
, and A.
Heifetz
, “Hotspot identification and drug design of protein-protein interaction modulators using the fragment molecular orbital method
,” J. Chem. Inf. Model.
62
, 3784
–3799
(2022
).73.
A.
Acharya
, R.
Agarwal
, M. B.
Baker
, J.
Baudry
, D.
Bhowmik
, S.
Boehm
, K. G.
Byler
, S. Y.
Chen
, L.
Coates
, C. J.
Cooper
, O.
Demerdash
, I.
Daidone
, J. D.
Eblen
, S.
Ellingson
, S.
Forli
, J.
Glaser
, J. C.
Gumbart
, J.
Gunnels
, O.
Hernandez
, S.
Irle
, D. W.
Kneller
, A.
Kovalevsky
, J.
Larkin
, T. J.
Lawrence
, S.
LeGrand
, S.-H.
Liu
, J. C.
Mitchell
, G.
Park
, J. M.
Parks
, A.
Pavlova
, L.
Petridis
, D.
Poole
, L.
Pouchard
, A.
Ramanathan
, D. M.
Rogers
, D.
Santos-Martins
, A.
Scheinberg
, A.
Sedova
, Y.
Shen
, J. C.
Smith
, M. D.
Smith
, C.
Soto
, A.
Tsaris
, M.
Thavappiragasam
, A. F.
Tillack
, J. V.
Vermaas
, V. Q.
Vuong
, J.
Yin
, S.
Yoo
, M.
Zahran
, and L.
Zanetti-Polzi
, “Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19
,” J. Chem. Inf. Model.
60
, 5832
–5852
(2020
).74.
H.
Lim
, H.-N.
Jeon
, S.
Lim
, Y.
Jang
, T.
Kim
, H.
Cho
, J.-G.
Pan
, and K. T.
No
, “Evaluation of protein descriptors in computer-aided rational protein engineering tasks and its application in property prediction in SARS-CoV-2 spike glycoprotein
,” Comput. Struct. Biotechnol. J.
20
, 788
–798
(2022
).75.
C.
Higuchi
and K.
Yoshizawa
, “Energy decomposition analysis of the adhesive interaction between an epoxy resin layer and a silica surface
,” Langmuir
37
, 8417
–8425
(2021
).76.
T.
Nakamura
and D. G.
Fedorov
, “The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: The role of differential stabilization and charge delocalization
,” Phys. Chem. Chem. Phys.
24
, 7739
–7747
(2022
).77.
H.
Nakata
and D. G.
Fedorov
, “Analytic gradient for time-dependent density functional theory combined with the fragment molecular orbital method
,” J. Chem. Theory Comput.
19
, 1276
–1285
(2023
).78.
Y.
Nishimoto
and D. G.
Fedorov
, “The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions
,” J. Chem. Phys.
154
, 111102
(2021
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.