Strategies for multiple-level parallelizations of quantum-mechanical calculations are discussed, with an emphasis on using groups of workers for performing parallel tasks. These parallel programming models can be used for a variety ab initio quantum chemistry approaches, including the fragment molecular orbital method and replica-exchange molecular dynamics. Strategies for efficient load balancing on problems of increasing granularity are introduced and discussed. A four-level parallelization is developed based on a multi-level hierarchical grouping, and a high parallel efficiency is achieved on the Theta supercomputer using 131 072 OpenMP threads.

1.
A. V.
Akimov
and
O. V.
Prezhdo
, “
Large-scale computations in chemistry: A bird’s eye view of a vibrant field
,”
Chem. Rev.
115
,
5797
5890
(
2015
).
2.
K.
Kowalski
,
R.
Bair
,
N. P.
Bauman
,
J. S.
Boschen
,
E. J.
Bylaska
,
J.
Daily
,
W. A.
de Jong
,
T.
Dunning
, Jr.
,
N.
Govind
,
R. J.
Harrison
,
M.
Keçeli
,
K.
Keipert
,
S.
Krishnamoorthy
,
S.
Kumar
,
E.
Mutlu
,
B.
Palmer
,
A.
Panyala
,
B.
Peng
,
R. M.
Richard
,
T. P.
Straatsma
,
P.
Sushko
,
E. F.
Valeev
,
M.
Valiev
,
H. J. J.
van Dam
,
J. M.
Waldrop
,
D. B.
Williams-Young
,
C.
Yang
,
M.
Zalewski
, and
T. L.
Windus
, “
From NWChem to NWChemEx: Evolving with the computational chemistry landscape
,”
Chem. Rev.
121
,
4962
4998
(
2021
).
3.
T.
Nakajima
,
M.
Katouda
,
M.
Kamiya
, and
Y.
Nakatsuka
, “
NTChem: A high-performance software package for quantum molecular simulation
,”
Int. J. Quantum Chem.
115
,
349
359
(
2015
).
4.
H.
Kitoh-Nishioka
,
H.
Umeda
, and
Y.
Shigeta
, “
Open-architecture program of fragment molecular orbital method for massive parallel computing (OpenFMO) with GPU acceleration
,” in
Recent Advances of the Fragment Molecular Orbital Method
, edited by
Y.
Mochizuki
,
S.
Tanaka
, and
K.
Fukuzawa
(
Springer
,
Singapore
,
2021
), pp.
77
90
.
5.
K.
Ishimura
, “
Development of massively parallel quantum chemistry program SMASH
,”
AIP Conf. Proc.
1702
,
090053
(
2015
).
6.
F.
Aquilante
,
J.
Autschbach
,
A.
Baiardi
,
S.
Battaglia
,
V. A.
Borin
,
L. F.
Chibotaru
,
I.
Conti
,
L.
De Vico
,
M.
Delcey
,
I. F.
Galván
,
N.
Ferré
,
L.
Freitag
,
M.
Garavelli
,
X.
Gong
,
S.
Knecht
,
E. D.
Larsson
,
R.
Lindh
,
M.
Lundberg
,
P. Å.
Malmqvist
,
A.
Nenov
,
J.
Norell
,
M.
Odelius
,
M.
Olivucci
,
T. B.
Pedersen
,
L.
Pedraza-González
,
Q. M.
Phung
,
K.
Pierloot
,
M.
Reiher
,
I.
Schapiro
,
J.
Segarra-Martí
,
F.
Segatta
,
L.
Seijo
,
S.
Sen
,
D.-C.
Sergentu
,
C. J.
Stein
,
L.
Ungur
,
M.
Vacher
,
A.
Valentini
, and
V.
Veryazov
, “
Modern quantum chemistry with [Open]Molcas
,”
J. Chem. Phys.
152
,
214117
(
2020
).
7.
M. S.
Gordon
,
S. R.
Pruitt
,
D. G.
Fedorov
, and
L. V.
Slipchenko
, “
Fragmentation methods: A route to accurate calculations on large systems
,”
Chem. Rev.
112
,
632
672
(
2012
).
8.
D. G.
Fedorov
,
R. M.
Olson
,
K.
Kitaura
,
M. S.
Gordon
, and
S.
Koseki
, “
A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO)
,”
J. Comput. Chem.
25
,
872
880
(
2004
).
9.
Y.
Mochizuki
,
K.
Yamashita
,
T.
Murase
,
T.
Nakano
,
K.
Fukuzawa
,
K.
Takematsu
,
H.
Watanabe
, and
S.
Tanaka
, “
Large scale FMO-MP2 calculations on a massively parallel-vector computer
,”
Chem. Phys. Lett.
457
,
396
403
(
2008
).
10.
Y.
Mochizuki
,
T.
Nakano
,
K.
Sakakura
,
Y.
Okiyama
,
H.
Watanabe
,
K.
Kato
,
Y.
Akinaga
,
S.
Sato
,
J.-i.
Yamamoto
,
K.
Yamashita
,
T.
Murase
,
T.
Ishikawa
,
Y.
Komeiji
,
Y.
Kato
,
N.
Watanabe
,
T.
Tsukamoto
,
H.
Mori
,
K.
Okuwaki
,
S.
Tanaka
,
A.
Kato
,
C.
Watanabe
, and
K.
Fukuzawa
, “
The ABINIT-MP program
,” in
Recent Advances of the Fragment Molecular Orbital Method
, edited by
Y.
Mochizuki
,
S.
Tanaka
, and
K.
Fukuzawa
(
Springer
,
Singapore
,
2021
), pp.
53
67
.
11.
K.
Takaba
,
C.
Watanabe
,
A.
Tokuhisa
,
Y.
Akinaga
,
B.
Ma
,
R.
Kanada
,
M.
Araki
,
Y.
Okuno
,
Y.
Kawashima
,
H.
Moriwaki
,
N.
Kawashita
,
T.
Honma
,
K.
Fukuzawa
, and
S.
Tanaka
, “
Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy
,”
J. Comput. Chem.
43
,
1362
1371
(
2022
).
12.
S.
Tanaka
,
S.
Tokutomi
,
R.
Hatada
,
K.
Okuwaki
,
K.
Akisawa
,
K.
Fukuzawa
,
Y.
Komeiji
,
Y.
Okiyama
, and
Y.
Mochizuki
, “
Dynamic cooperativity of ligand-residue interactions evaluated with the fragment molecular orbital method
,”
J. Phys. Chem. B
125
,
6501
6512
(
2021
).
13.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, “
General atomic and molecular electronic structure system
,”
J. Comput. Chem.
14
,
1347
(
1993
).
14.
M. S.
Gordon
and
M. W.
Schmidt
, “
Advances in electronic structure theory: GAMESS a decade later
,” in
Theory and Applications of Computational Chemistry the First Forty Years
, edited by
C.
Dykstra
,
G.
Frenking
,
K.
Kim
, and
G.
Scuseria
(
Elsevier Science
,
Amsterdam
,
2005
), pp.
1167
1189
.
15.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L. G.
Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
, “
Recent developments in the general atomic and molecular electronic structure system
,”
J. Chem. Phys.
152
,
154102
(
2020
).
16.
B. Q.
Pham
,
M.
Alkan
, and
M. S.
Gordon
, “
Porting fragmentation methods to GPU using an OpenMP API: Offloading the Fock build for low angular momentum functions
J. Chem. Theory Comput.
(published online,
2023
).
17.
M.
Alkani
,
B. Q.
Pham
,
J. R.
Hammond
, and
M. S.
Gordon
, “
Enabling Fortran standard parallelism in GAMESS for accelerated quantum chemistry calculations
” (unpublished).
18.
S.
Bak
,
C.
Bertoni
,
S.
Boehm
,
R.
Budiardja
,
B. M.
Chapman
,
J.
Doerfert
,
M.
Eisenbach
,
H.
Finkel
,
O.
Hernandez
,
J.
Huber
,
S.
Iwasaki
,
V.
Kale
,
P. R. C.
Kent
,
J.
Kwack
,
M.
Lin
,
P.
Luszczek
,
Y.
Luo
,
B.
Pham
,
S.
Pophale
,
K.
Ravikumar
,
V.
Sarkar
,
T.
Scogland
,
S.
Tian
, and
P. K.
Yeung
, “
OpenMP application experiences: Porting to accelerated nodes
,”
Parallel Comput.
109
,
102856
(
2022
).
19.
B.
Chapman
,
B.
Pham
,
C.
Yang
,
C.
Daley
,
C.
Bertoni
,
D.
Kulkarni
,
D.
Oryspayev
,
E.
D’Azevedo
,
J.
Doerfert
,
K.
Zhou
,
K.
Ravikumar
,
M.
Gordon
,
M. D.
Ben
,
M.
Lin
,
M.
Alkan
,
M.
Kruse
,
O.
Hernandez
,
P. K.
Yeung
,
P.
Lin
,
P.
,
Xu
,
S.
Pophale
,
T.
Sattasathuchana
,
V.
Kale
,
W.
Huhn
, and
Y.
He
, “
Outcomes of OpenMP Hackathon: OpenMP application experiences with the offloading mode (Part I)
,” in
Proceedings of IWOMP 2021
(
Springer International Publishing
,
Bristol, UK
,
2021
), pp.
67
80
.
20.
A.
Asadchev
,
B. M.
Bode
, and
M. S.
Gordon
, “
Performance of electronic structure calculations on BG/L and XT4 computers
,”
J. Comput. Theor. Nanosci.
6
,
1290
1296
(
2009
).
21.
Y.
Alexeev
,
A.
Mahajan
,
S.
Leyffer
,
G.
Fletcher
, and
D. G.
Fedorov
, “
Heuristic static load-balancing algorithm applied to the fragment molecular orbital method
,” in
Proceedings of the International Supercomputing Conference, ISC 2012
(
IEEE Computer Society
,
Salt Lake City
,
2012
).
22.
S. K.
Talamudupula
,
M.
Sosonkina
,
A.
Gaenko
, and
M. W.
Schmidt
, “
Fragment molecular orbital method adaptations for heterogeneous computing platforms
,”
Procedia Comput. Sci.
9
,
489
497
(
2012
).
23.
Y.
Ma
,
Z.
Li
,
X.
Chen
,
B.
Ding
,
N.
Li
,
T.
Lu
,
B.
Zhang
,
B.
Suo
, and
Z.
Jin
, “
Machine-learning assisted scheduling optimization and its application in quantum chemical calculations
,”
J. Comput. Chem.
44
,
1174
1188
(
2023
).
24.
T.
Ikegami
,
T.
Ishida
,
D. G.
Fedorov
,
K.
Kitaura
,
Y.
Inadomi
,
H.
Umeda
,
M.
Yokokawa
, and
S.
Sekiguchi
, “
Full electron calculation beyond 20 000 atoms: Ground electronic state of photosynthetic proteins
,” in
Proceedings of the International Supercomputing Conference, ISC 2005
(
IEEE Computer Society
,
2005
).
25.
D. G.
Fedorov
and
K.
Kitaura
, “
Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method
,”
J. Chem. Phys.
122
,
054108
(
2005
).
26.
M.
Chiba
,
D. G.
Fedorov
, and
K.
Kitaura
, “
Time-dependent density functional theory based upon the fragment molecular orbital method
,”
J. Chem. Phys.
127
,
104108
(
2007
).
27.
D. G.
Fedorov
,
Complete Guide to the Fragment Molecular Orbital Method in GAMESS
(
World Scientific
,
Singapore
,
2023
).
28.
G. D.
Fletcher
,
M. W.
Schmidt
,
B. M.
Bode
, and
M. S.
Gordon
, “
The distributed data interface in GAMESS
,”
Comput. Phys. Commun.
128
,
190
200
(
2000
).
29.
K.
Ishimura
,
K.
Kuramoto
,
Y.
Ikuta
, and
S.-a.
Hyodo
, “
MPI/OpenMP hybrid parallel algorithm for Hartree−Fock calculations
,”
J. Chem. Theory Comput.
6
,
1075
1080
(
2010
).
30.
V. A.
Mironov
,
Y.
Alexeev
,
D. G.
Fedorov
,
H.
Umeda
,
S.
Pruitt
,
A.
Gaenko
, and
M. S.
Gordon
, “
Multi-level parallelization of the fragment molecular orbital method in GAMESS
,” in
Recent Advances of the Fragment Molecular Orbital Method
, edited by
Y.
Mochizuki
,
S.
Tanaka
, and
K.
Fukuzawa
(
Springer
,
Singapore
,
2021
), pp.
601
616
.
31.
D. G.
Fedorov
and
K.
Kitaura
, “
The importance of three-body terms in the fragment molecular orbital method
,”
J. Chem. Phys.
120
,
6832
6840
(
2004
).
32.
D. G.
Fedorov
, “
The fragment molecular orbital method: Theoretical development, implementation in GAMESS and applications
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1322
(
2017
).
33.
C.
Steinmann
,
D. G.
Fedorov
, and
J. H.
Jensen
, “
Effective fragment molecular orbital method: A merger of the effective fragment potential and fragment molecular orbital methods
,”
J. Phys. Chem. A
114
,
8705
8712
(
2010
).
34.
C.
Bertoni
and
M. S.
Gordon
, “
Analytic gradients for the effective fragment molecular orbital method
,”
J. Chem. Theory Comput.
12
,
4743
4767
(
2016
).
35.
D. G.
Fedorov
,
Y.
Sugita
, and
C. H.
Choi
, “
Efficient parallel implementations of QM/MM-REMD (quantum mechanical/molecular mechanics-replica-exchange MD) and umbrella sampling: Isomerization of H2O2 in aqueous solution
,”
J. Phys. Chem. B
117
,
7996
8002
(
2013
).
36.
S.
Ito
,
D. G.
Fedorov
,
Y.
Okamoto
, and
S.
Irle
, “
Implementation of replica-exchange umbrella sampling in GAMESS
,”
Comput. Phys. Commun.
228
,
152
162
(
2018
).
37.
T.
Taketsugu
,
K.
Yagi
, and
M. S.
Gordon
, “
A vibrational analysis of the 7-azaindole-water complex: Anharmonicities using the quartic force field
,”
Int. J. Quantum Chem.
104
,
758
772
(
2005
).
38.
B.
Njegic
and
M. S.
Gordon
, “
Predicting accurate vibrational frequencies for highly anharmonic systems
,”
J. Chem. Phys.
129
,
164107
(
2008
).
39.
P.
Xu
,
T.
Sattasathuchana
,
E.
Guidez
,
S. P.
Webb
,
K.
Montgomery
,
H.
Yasini
,
I. F. M.
Pedreira
, and
M. S.
Gordon
, “
Computation of host–guest binding free energies with a new quantum mechanics based mining minima algorithm
,”
J. Chem. Phys.
154
,
104122
(
2021
).
40.
M.
Katouda
,
M.
Kobayashi
,
H.
Nakai
, and
S.
Nagase
, “
Two-level hierarchical parallelization of second-order Møller–Plesset perturbation calculations in divide-and-conquer method
,”
J. Comput. Chem.
32
,
2756
2764
(
2011
).
41.
A.
Devarajan
,
T. L.
Windus
, and
M. S.
Gordon
, “
Implementation of dynamical nucleation theory effective fragment potentials method for modeling aerosol chemistry
,”
J. Phys. Chem. A
115
,
13987
13996
(
2011
).
42.
A.
Devarajan
,
A.
Gaenko
,
M. S.
Gordon
, and
T. L.
Windus
, “
Nucleation using the effective fragment potential and two-level parallelism
,” in
Fragmentation: Toward Accurate Calculations on Complex Molecular Systems
, edited by
M. S.
Gordon
(
Wiley
,
Hoboken
,
2017
), pp.
209
226
.
43.
Y.
Nishimoto
,
D. G.
Fedorov
, and
S.
Irle
, “
Third-order density-functional tight-binding combined with the fragment molecular orbital method
,”
Chem. Phys. Lett.
636
,
90
96
(
2015
).
44.
D. G.
Fedorov
, “
Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method
,”
J. Chem. Phys.
157
,
231001
(
2022
).
45.
V.
Mironov
,
A.
Moskovsky
,
M.
D’Mello
, and
Y.
Alexeev
, “
An efficient MPI/OpenMP parallelization of the Hartree–Fock–Roothaan method for the first generation of Intel® Xeon Phi™ processor architecture
,”
Int. J. High Perform. Comput. Appl.
33
,
212
224
(
2019
).
46.
V.
Mironov
,
Y.
Alexeev
, and
D. G.
Fedorov
, “
MPI+OpenMP parallelization of DFT method in GAMESS
,” poster presentation at Supercomputing 2019, Denver. URL: https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost211s2-file2.pdf; accessed on 31 January 2023.
47.
B. Q.
Pham
and
M. S.
Gordon
, “
Hybrid distributed/shared memory model for the RI-MP2 method in the fragment molecular orbital framework
,”
J. Chem. Theory Comput.
15
,
5252
5258
(
2019
).
48.
B. Q.
Pham
and
M. S.
Gordon
, “
Development of the FMO/RI-MP2 fully analytic gradient using a hybrid-distributed/shared memory programming model
,”
J. Chem. Theory Comput.
16
,
1039
1054
(
2020
).
49.
D.
Datta
and
M. S.
Gordon
, “
A massively parallel implementation of the CCSD(T) method using the resolution-of-the-identity approximation and a hybrid distributed/shared memory parallelization model
,”
J. Chem. Theory Comput.
17
,
4799
4822
(
2021
).
50.
V.
Mironov
,
Y.
Alexeev
, and
D. G.
Fedorov
, “
Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method
,”
Int. J. Quantum Chem.
119
,
e25937
(
2019
).
51.
D. S.
Kaliakin
,
D. G.
Fedorov
,
Y.
Alexeev
, and
S. A.
Varganov
, “
Locating minimum energy crossings of different spin states using the fragment molecular orbital method
,”
J. Chem. Theory Comput.
15
,
6074
6084
(
2019
).
52.
S. R.
Pruitt
,
S. S.
Leang
,
P.
Xu
,
D. G.
Fedorov
, and
M. S.
Gordon
, “
Hexamers and witchamers: Which hex do you choose?
,”
Comput. Theor. Chem.
1021
,
70
83
(
2013
).
53.
A.
Rakshit
,
P.
Bandyopadhyay
,
J. P.
Heindel
, and
S. S.
Xantheas
, “
Atlas of putative minima and low-lying energy networks of water clusters n = 3–25
,”
J. Chem. Phys.
151
,
214307
(
2019
).
54.
A.
Gijón
and
E. R.
Hernández
, “
Quantum simulations of neutral water clusters and singly-charged water cluster anions
,”
Phys. Chem. Chem. Phys.
24
,
14440
14451
(
2022
).
55.
R.
Kusaka
,
S.
Nihonyanagi
, and
T.
Tahara
, “
The photochemical reaction of phenol becomes ultrafast at the air–water interface
,”
Nat. Chem.
13
,
306
311
(
2021
).
56.
Y.
Nishimoto
,
H.
Nakata
,
D. G.
Fedorov
, and
S.
Irle
, “
Large-scale quantum- mechanical molecular dynamics simulations using density-functional tight-binding combined with the fragment molecular orbital method
,”
J. Phys. Chem. Lett.
6
,
5034
5039
(
2015
).
57.
M.
Gaus
,
A.
Goez
, and
M.
Elstner
, “
Parametrization and benchmark of DFTB3 for organic molecules
,”
J. Chem. Theory Comput.
9
,
338
354
(
2013
).
58.
T.
Nagata
,
D. G.
Fedorov
,
K.
Ishimura
, and
K.
Kitaura
, “
Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method
,”
J. Chem. Phys.
135
,
044110
(
2011
).
59.
G.
Barca
,
C.
Snowdon
,
J.
Vallejo
,
F.
Kazemian
,
A. P.
Rendell
, and
M. S.
Gordon
, “
Scaling correlated fragment molecular orbital calculations on summit
,” in
Proceedings of the International Supercomputing Conference, ISC 2022
(
IEEE Computer Society
,
Dallas
,
2022
), pp.
72
85
.
60.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
, “
Fragment molecular orbital method: An approximate computational method for large molecules
,”
Chem. Phys. Lett.
313
,
701
706
(
1999
).
61.
K.
Fukuzawa
and
S.
Tanaka
, “
Fragment molecular orbital calculations for biomolecules
,”
Curr. Opin. Struct. Biol.
72
,
127
134
(
2022
).
62.
D. G.
Fedorov
,
N.
Asada
,
I.
Nakanishi
, and
K.
Kitaura
The use of many-body expansions and geometry optimizations in fragment-based methods
,”
Acc. Chem. Res.
47
,
2846
2856
(
2014
).
63.
S. P.
Veccham
,
J.
Lee
, and
M.
Head-Gordon
, “
Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach
,”
J. Chem. Phys.
151
,
194101
(
2019
).
64.
T.
Nakano
,
T.
Kaminuma
,
T.
Sato
,
K.
Fukuzawa
,
Y.
Akiyama
,
M.
Uebayasi
, and
K.
Kitaura
, “
Fragment molecular orbital method: Use of approximate electrostatic potential
,”
Chem. Phys. Lett.
351
,
475
480
(
2002
).
65.
G. D.
Fletcher
,
D. G.
Fedorov
,
S. R.
Pruitt
,
T. L.
Windus
, and
M. S.
Gordon
, “
Large-scale MP2 calculations on the Blue Gene architecture using the fragment molecular orbital method
,”
J. Chem. Theory Comput.
8
,
75
79
(
2012
).
66.
S. R.
Pruitt
,
H.
Nakata
,
T.
Nagata
,
M.
Mayes
,
Y.
Alexeev
,
G.
Fletcher
,
D. G.
Fedorov
,
K.
Kitaura
, and
M. S.
Gordon
, “
Importance of three-body interactions in molecular dynamics simulations of water demonstrated with the fragment molecular orbital method
,”
J. Chem. Theory Comput.
12
,
1423
1435
(
2016
).
67.
Y.
Nishimoto
,
D. G.
Fedorov
, and
S.
Irle
, “
Density-functional tight-binding combined with the fragment molecular orbital method
,”
J. Chem. Theory Comput.
10
,
4801
4812
(
2014
).
68.
Y.
Nishimoto
and
D. G.
Fedorov
, “
Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding
,”
J. Chem. Phys.
148
,
064115
(
2018
).
69.
D. G.
Fedorov
, “
Partitioning of the vibrational free energy
,”
J. Phys. Chem. Lett.
12
,
6628
6633
(
2021
).
70.
T.
Nakamura
,
T.
Yokaichiya
, and
D. G.
Fedorov
, “
Analysis of guest adsorption on crystal surfaces based on the fragment molecular orbital method
,”
J. Phys. Chem. A
126
,
957
969
(
2022
).
71.
K.
Okuwaki
,
K.
Akisawa
,
R.
Hatada
,
Y.
Mochizuki
,
K.
Fukuzawa
,
Y.
Komeiji
, and
S.
Tanaka
, “
Collective residue interactions in trimer complexes of SARS-CoV-2 spike proteins analyzed by fragment molecular orbital method
,”
Appl. Phys. Express
15
,
017001
(
2022
).
72.
S.
Monteleone
,
D. G.
Fedorov
,
A.
Townsend-Nicholson
,
M.
Southey
,
M.
Bodkin
, and
A.
Heifetz
, “
Hotspot identification and drug design of protein-protein interaction modulators using the fragment molecular orbital method
,”
J. Chem. Inf. Model.
62
,
3784
3799
(
2022
).
73.
A.
Acharya
,
R.
Agarwal
,
M. B.
Baker
,
J.
Baudry
,
D.
Bhowmik
,
S.
Boehm
,
K. G.
Byler
,
S. Y.
Chen
,
L.
Coates
,
C. J.
Cooper
,
O.
Demerdash
,
I.
Daidone
,
J. D.
Eblen
,
S.
Ellingson
,
S.
Forli
,
J.
Glaser
,
J. C.
Gumbart
,
J.
Gunnels
,
O.
Hernandez
,
S.
Irle
,
D. W.
Kneller
,
A.
Kovalevsky
,
J.
Larkin
,
T. J.
Lawrence
,
S.
LeGrand
,
S.-H.
Liu
,
J. C.
Mitchell
,
G.
Park
,
J. M.
Parks
,
A.
Pavlova
,
L.
Petridis
,
D.
Poole
,
L.
Pouchard
,
A.
Ramanathan
,
D. M.
Rogers
,
D.
Santos-Martins
,
A.
Scheinberg
,
A.
Sedova
,
Y.
Shen
,
J. C.
Smith
,
M. D.
Smith
,
C.
Soto
,
A.
Tsaris
,
M.
Thavappiragasam
,
A. F.
Tillack
,
J. V.
Vermaas
,
V. Q.
Vuong
,
J.
Yin
,
S.
Yoo
,
M.
Zahran
, and
L.
Zanetti-Polzi
, “
Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19
,”
J. Chem. Inf. Model.
60
,
5832
5852
(
2020
).
74.
H.
Lim
,
H.-N.
Jeon
,
S.
Lim
,
Y.
Jang
,
T.
Kim
,
H.
Cho
,
J.-G.
Pan
, and
K. T.
No
, “
Evaluation of protein descriptors in computer-aided rational protein engineering tasks and its application in property prediction in SARS-CoV-2 spike glycoprotein
,”
Comput. Struct. Biotechnol. J.
20
,
788
798
(
2022
).
75.
C.
Higuchi
and
K.
Yoshizawa
, “
Energy decomposition analysis of the adhesive interaction between an epoxy resin layer and a silica surface
,”
Langmuir
37
,
8417
8425
(
2021
).
76.
T.
Nakamura
and
D. G.
Fedorov
, “
The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: The role of differential stabilization and charge delocalization
,”
Phys. Chem. Chem. Phys.
24
,
7739
7747
(
2022
).
77.
H.
Nakata
and
D. G.
Fedorov
, “
Analytic gradient for time-dependent density functional theory combined with the fragment molecular orbital method
,”
J. Chem. Theory Comput.
19
,
1276
1285
(
2023
).
78.
Y.
Nishimoto
and
D. G.
Fedorov
, “
The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions
,”
J. Chem. Phys.
154
,
111102
(
2021
).
You do not currently have access to this content.