The relation between wetting properties and geometric parameters of fractal surfaces are widely discussed on the literature and, however, there are still divergences on this topic. Here we propose a simple theoretical model to describe the wetting properties of a droplet of water placed on a hierarchical structured surface and test the predictions of the model and the dependence of the droplet wetting state on the initial conditions using simulation of the 3-spin Potts model. We show that increasing the auto-similarity level of the hierarchy – called n – does not affect considerably the stable wetting state of the droplet but increases its contact angle. Simulations also explicit the existence of metastable states on this type of surfaces and shows that, when n increases, the metastability becomes more pronounced. Finally we show that the fractal dimension of the surface is not a good predictor of the contact angle of the droplet.

1.
D.
Quéré
, “
Wetting and roughness
,”
Annu. Rev. Mater. Res.
38
,
71
99
(
2008
).
2.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
3.
R. N.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
,
988
994
(
1936
).
4.
W.
Barthlott
and
C.
Neinhuis
, “
Purity of the sacred lotus, or escape from contamination in biological surfaces
,”
Planta
202
,
1
8
(
1997
).
5.
R.
Blossey
, “
Self-cleaning surfaces—Virtual realities
,”
Nat. Mater.
2
,
301
306
(
2003
).
6.
Z.
Xue
,
Y.
Cao
,
N.
Liu
,
L.
Feng
, and
L.
Jiang
, “
Special wettable materials for oil/water separation
,”
J. Mater. Chem. A
2
,
2445
2460
(
2014
).
7.
Y. J.
Chan
,
M. F.
Chong
,
C. L.
Law
, and
D. G.
Hassell
, “
A review on anaerobic–aerobic treatment of industrial and municipal wastewater
,”
Chem. Eng. J.
155
,
1
18
(
2009
).
8.
M.
Padaki
,
R. S.
Murali
,
M. S.
Abdullah
,
N.
Misdan
,
A.
Moslehyani
,
M. A.
Kassim
,
N.
Hilal
, and
A. F.
Ismail
, “
Membrane technology enhancement in oil–water separation. A review
,”
Desalination
357
,
197
207
(
2015
).
9.
C.
Gavazzoni
,
M.
Silvestrini
, and
C.
Brito
, “
Modeling oil-water separation with controlled wetting properties
,”
J. Chem. Phys.
154
,
104704
(
2021
).
10.
L.
Feng
,
S.
Li
,
Y.
Li
,
H.
Li
,
L.
Zhang
,
J.
Zhai
,
Y.
Song
,
B.
Liu
,
L.
Jiang
, and
D.
Zhu
, “
Super-hydrophobic surfaces: From natural to artificial
,”
Adv. Mater.
14
,
1857
1860
(
2002
).
11.
Y.-T.
Cheng
and
D. E.
Rodak
, “
Is the lotus leaf superhydrophobic?
,”
Appl. Phys. Lett.
86
,
144101
(
2005
).
12.
K.
Liu
,
X.
Yao
, and
L.
Jiang
, “
Recent developments in bio-inspired special wettability
,”
Chem. Soc. Rev.
39
,
3240
3255
(
2010
).
13.
T.
Onda
,
S.
Shibuichi
,
N.
Satoh
, and
K.
Tsujii
, “
Super-water-repellent fractal surfaces
,”
Langmuir
12
,
2125
2127
(
1996
).
14.
S.
Shibuichi
,
T.
Yamamoto
,
T.
Onda
, and
K.
Tsujii
, “
Super water-and oil-repellent surfaces resulting from fractal structure
,”
J. Colloid Interface Sci.
208
,
287
294
(
1998
).
15.
A.
Synytska
,
L.
Ionov
,
K.
Grundke
, and
M.
Stamm
, “
Wetting on fractal superhydrophobic surfaces from ‘core-shell’ particles: A comparison of theory and experiment
,”
Langmuir
25
,
3132
3136
(
2009
).
16.
C.
Yang
,
U.
Tartaglino
, and
B. N. J.
Persson
, “
Influence of surface roughness on superhydrophobicity
,”
Phys. Rev. Lett.
97
,
116103
(
2006
).
17.
R.
Jain
and
R.
Pitchumani
, “
Fractal model for wettability of rough surfaces
,”
Langmuir
33
,
7181
7190
(
2017
).
18.
M.
Gao
,
D. P.
Wang
,
Y. F.
Huang
,
S.
Meng
, and
W. H.
Wang
, “
Tunable hydrophobicity on fractal and micro-nanoscale hierarchical fracture surface of metallic glasses
,”
Mater. Des.
95
,
612
617
(
2016
).
19.
C.
Piferi
,
K.
Bazaka
,
D. L.
D’Aversa
,
R.
Di Girolamo
,
C.
De Rosa
,
H. E.
Roman
,
C.
Riccardi
, and
I.
Levchenko
, “
Hydrophilicity and hydrophobicity control of plasma-treated surfaces via fractal parameters
,”
Adv. Mater. Interfaces
8
,
2100724
(
2021
).
20.
M.
Sbragaglia
,
A. M.
Peters
,
C.
Pirat
,
B. M.
Borkent
,
R. G. H.
Lammertink
,
M.
Wessling
, and
D.
Lohse
, “
Spontaneous breakdown of superhydrophobicity
,”
Phys. Rev. Lett.
99
,
156001
(
2007
).
21.
P.
Tsai
,
R. G. H.
Lammertink
,
M.
Wessling
, and
D.
Lohse
, “
Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures
,”
Phys. Rev. Lett.
104
,
116102
(
2010
).
22.
A.
Shahraz
,
A.
Borhan
, and
K. A.
Fichthorn
, “
A theory for the morphological dependence of wetting on a physically patterned solid surface
,”
Langmuir
28
,
14227
14237
(
2012
).
23.
D. M.
Lopes
,
S. M. M.
Ramos
,
L. R.
de Oliveira
, and
J. C. M.
Mombach
, “
Cassie-Baxter to Wenzel state wetting transition: A 2D numerical simulation
,”
RSC Adv.
3
,
24530
24534
(
2013
).
24.
H. C. M.
Fernandes
,
M. H.
Vainstein
, and
C.
Brito
, “
Modeling of droplet evaporation on superhydrophobic surfaces
,”
Langmuir
31
,
7652
7659
(
2015
).
25.
M.
Silvestrini
and
C.
Brito
, “
Wettability of reentrant surfaces: A global energy approach
,”
Langmuir
33
,
12535
12545
(
2017
).
26.
D.
Lazzari
and
C.
Brito
, “
Geometric and chemical nonuniformity may induce the stability of more than one wetting state in the same hydrophobic surface
,”
Phys. Rev. E
99
,
032801
(
2019
).
27.
A.
Shahraz
,
A.
Borhan
, and
K. A.
Fichthorn
, “
Wetting on physically patterned solid surfaces: The relevance of molecular dynamics simulations to macroscopic systems
,”
Langmuir
29
,
11632
11639
(
2013
).
28.
M.
Lundgren
,
N. L.
Allan
,
T.
Cosgrove
, and
N.
George
, “
Molecular dynamics study of wetting of a pillar surface
,”
Langmuir
19
,
7127
7129
(
2003
).
29.
M.
Silvestrini
,
A.
Tinti
,
A.
Giacomello
, and
C.
Brito
, “
Can one predict a drop contact angle?
,”
Adv. Mater. Interfaces
8
,
2101005
(
2021
).
30.
R. D.
Hazlett
, “
Fractal applications: Wettability and contact angle
,”
J. Colloid Interface Sci.
137
,
527
533
(
1990
).
31.
T.
Koishi
,
K.
Yasuoka
, and
S.
Fujikawa
, “
Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
8435
8440
(
2009
).
32.
L. R.
de Oliveira
,
D. M.
Lopes
,
S. M. M.
Ramos
, and
J. C. M.
Mombach
, “
Two-dimensional modeling of the superhydrophobic behavior of a liquid droplet sliding down a ramp of pillars
,”
Soft Matter
7
,
3763
3765
(
2011
).
33.
V.
Mortazavi
,
R. M.
D’Souza
, and
M.
Nosonovsky
, “
Study of contact angle hysteresis using the cellular Potts model
,”
Phys. Chem. Chem. Phys.
15
,
2749
2756
(
2013
).
34.
T.
Koishi
,
K.
Yasuoka
,
S.
Fujikawa
, and
X. C.
Zeng
, “
Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: A molecular dynamics simulation study
,”
ACS Nano
5
,
6834
6842
(
2011
).
35.
H.
Wu
,
A.
Borhan
, and
K. A.
Fichthorn
, “
Coarse-grained interaction of a fluid with a physically-patterned solid surface: Application to nanodroplet wetting
,”
J. Low Temp. Phys.
157
,
277
295
(
2009
).
36.
A.
Dupuis
and
J. M.
Yeomans
, “
Modeling droplets on superhydrophobic surfaces: Equilibrium states and transitions
,”
Langmuir
21
,
2624
2629
(
2005
).
37.
K. A.
Brakke
, “
The surface evolver
,”
Exp. Math.
1
,
141
165
(
1992
).
38.
S.
Peng
,
B.-E.
Pinchasik
,
H.
Hao
,
H.
Möhwald
, and
X.
Zhang
, “
Morphological transformation of surface femtodroplets upon dissolution
,”
J. Phys. Chem. Lett.
8
,
584
590
(
2017
).
39.
C.
Xu
,
Z.
Lu
, and
L.
Li
, “
Surface evolver simulation of droplet wetting morphologies on fiber without gravity
,”
Front. Energy Res.
9
,
988
(
2022
).
40.
G.
McHale
,
S.
Aqil
,
N. J.
Shirtcliffe
,
M. I.
Newton
, and
H. Y.
Erbil
, “
Analysis of droplet evaporation on a superhydrophobic surface
,”
Langmuir
21
,
11053
11060
(
2005
).
41.
G.
Liu
,
L.
Fu
,
A. V.
Rode
, and
V. S. J.
Craig
, “
Water droplet motion control on superhydrophobic surfaces: Exploiting the Wenzel-to-Cassie transition
,”
Langmuir
27
,
2595
2600
(
2011
).
42.
B.
Bhushan
,
Y. C.
Jung
, and
K.
Koch
, “
Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion
,”
Philos. Trans. R. Soc., A
367
,
1631
1672
(
2009
).
43.
J. B.
Boreyko
,
C. H.
Baker
,
C. R.
Poley
, and
C.-H.
Chen
, “
Wetting and dewetting transitions on hierarchical superhydrophobic surfaces
,”
Langmuir
27
,
7502
7509
(
2011
).
44.
T. W.
Kwon
,
J.
Jang
,
M. S.
Ambrosia
, and
M. Y.
Ha
, “
Molecular dynamics study on the hydrophobicity of a surface patterned with hierarchical nanotextures
,”
Colloids Surf., A
559
,
209
217
(
2018
).
45.
C.
Neinhuis
and
W.
Barthlott
, “
Characterization and distribution of water-repellent, self-cleaning plant surfaces
,”
Ann. Bot.
79
,
667
677
(
1997
).
46.
H.
Zhang
,
H.
Zhu
,
X.
Liang
,
P.
Liu
,
Q.
Zhang
, and
S.
Zhu
, “
Wrinkled smart surfaces: Enhanced switchable wettability and directional liquid transportation
,”
Appl. Surf. Sci.
513
,
145810
(
2020
).
47.
J.-N.
Wang
,
Y.-Q.
Liu
,
Y.-L.
Zhang
,
J.
Feng
, and
H.-B.
Sun
, “
Pneumatic smart surfaces with rapidly switchable dominant and latent superhydrophobicity
,”
NPG Asia Mater.
10
,
e470
(
2018
).
48.
K.
Liu
,
Y.
Tian
, and
L.
Jiang
, “
Bio-inspired superoleophobic and smart materials: Design, fabrication, and application
,”
Prog. Mater. Sci.
58
,
503
564
(
2013
).

Supplementary Material

You do not currently have access to this content.