Carbohydrates constitute one of the four key classes of biomacromolecules but have not been studied by 2D-IR spectroscopy so far. Similarly as for proteins, a lack of native vibrational reporter groups, combined with their huge structural diversity, leads to spectrally congested infrared spectra already for single carbohydrates. Biophysical studies are further impeded by the strong overlap between water modes and carbohydrate modes. Here, we demonstrate the application of the known vibrational reporter group thiocyanate (SCN) as a label in glucose. In this first study, we are able to perform IR and 2D-IR spectroscopy of β-glucose with SCN at the C2 position in chloroform. Upon improved synthesis and the removal of all protecting groups, we successfully performed 2D-IR spectroscopy of β-glucose in H2O. All experimental results are compared to those of methyl-thiocyanate as a reference sample. Overall, we show that the concept of using site-specific vibrational reporter groups can be transferred to carbohydrates. Thus, biophysical studies with 2D-IR spectroscopy can now expand to glycoscience.

1.
M. K.
Petti
,
J. P.
Lomont
,
M.
Maj
, and
M. T.
Zanni
, “
Two-dimensional spectroscopy is being used to address core scientific questions in biology and materials science
,”
J. Phys. Chem. B
122
,
1771
1780
(
2018
).
2.
R.
Adhikary
,
J.
Zimmermann
,
P. E.
Dawson
, and
F. E.
Romesberg
, “
IR probes of protein microenvironments: Utility and potential for perturbation
,”
ChemPhysChem
15
,
849
853
(
2014
).
3.
M. C.
Thielges
, “
Transparent window 2D IR spectroscopy of proteins
,”
J. Chem. Phys.
155
,
040903
(
2021
).
4.
C. R.
Baiz
,
B.
Błasiak
,
J.
Bredenbeck
,
M.
Cho
,
J.-H.
Choi
,
S. A.
Corcelli
,
A. G.
Dijkstra
,
C.-J.
Feng
,
S.
Garrett-Roe
,
N.-H.
Ge
,
M. W. D.
Hanson-Heine
,
J. D.
Hirst
,
T. L. C.
Jansen
,
K.
Kwac
,
K. J.
Kubarych
,
C. H.
Londergan
,
H.
Maekawa
,
M.
Reppert
,
S.
Saito
,
S.
Roy
,
J. L.
Skinner
,
G.
Stock
,
J. E.
Straub
,
M. C.
Thielges
,
K.
Tominaga
,
A.
Tokmakoff
,
H.
Torii
,
L.
Wang
,
L. J.
Webb
, and
M. T.
Zanni
, “
Vibrational spectroscopic map, vibrational spectroscopy, and intermolecular interaction
,”
Chem. Rev.
120
,
7152
7218
(
2020
).
5.
A.
Ghosh
,
J. S.
Ostrander
, and
M. T.
Zanni
, “
Watching proteins wiggle: Mapping structures with two-dimensional infrared spectroscopy
,”
Chem. Rev.
117
,
10726
10759
(
2017
).
6.
R.
Adhikary
,
J.
Zimmermann
, and
F. E.
Romesberg
, “
Transparent window vibrational probes for the characterization of proteins with high structural and temporal resolution
,”
Chem. Rev.
117
,
1927
1969
(
2017
).
7.
H.
Kim
and
M.
Cho
, “
Infrared probes for studying the structure and dynamics of biomolecules
,”
Chem. Rev.
113
,
5817
5847
(
2013
).
8.
H.
Müller-Werkmeister
, “
Unnatural amino acids as novel probes for ultrafast 2D-IR spectroscopy of protein
,” Ph.D. thesis,
Johann Wolfgang Goethe-Universität
,
Frankfurt
,
2014
.
9.
B.
Błasiak
,
C. H.
Londergan
,
L. J.
Webb
, and
M.
Cho
, “
Vibrational probes: From small molecule solvatochromism theory and experiments to applications in complex systems
,”
Acc. Chem. Res.
50
,
968
976
(
2017
).
10.
S.
Ramos
and
M. C.
Thielges
, “
Site-specific 1D and 2D IR spectroscopy to characterize the conformations and dynamics of protein molecular recognition
,”
J. Phys. Chem. B
123
,
3551
3566
(
2019
).
11.
L. J. G. W.
van Wilderen
,
D.
Kern-Michler
,
H. M.
Müller-Werkmeister
, and
J.
Bredenbeck
, “
Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy
,”
Phys. Chem. Chem. Phys.
16
,
19643
19653
(
2014
).
12.
L.
Blankenburg
,
L.
Schroeder
,
F.
Habenstein
,
B.
Błasiak
,
T.
Kottke
, and
J.
Bredenbeck
, “
Following local light-induced structure changes and dynamics of the photoreceptor PYP with the thiocyanate IR label
,”
Phys. Chem. Chem. Phys.
21
,
6622
6634
(
2019
).
13.
M. G.
Maienschein-Cline
and
C. H.
Londergan
, “
The CN stretching band of aliphatic thiocyanate is sensitive to solvent dynamics and specific solvation
,”
J. Phys. Chem. A
111
,
10020
10025
(
2007
).
14.
V. P.
Roy
and
K. J.
Kubarych
, “
Interfacial hydration dynamics in cationic micelles using 2D-IR and NMR
,”
J. Phys. Chem. B
121
,
9621
9630
(
2017
).
15.
Z.
Ren
,
T.
Brinzer
,
S.
Dutta
, and
S.
Garrett-Roe
, “
Thiocyanate as a local probe of ultrafast structure and dynamics in imidazolium-based ionic liquids: Water-induced heterogeneity and cation-induced ion pairing
,”
J. Phys. Chem. B
119
,
4699
4712
(
2015
).
16.
R.
Zhao
,
J. C.
Shirley
,
E.
Lee
,
A.
Grofe
,
H.
Li
,
C. R.
Baiz
, and
J.
Gao
, “
Origin of thiocyanate spectral shifts in water and organic solvents
,”
J. Chem. Phys.
156
,
104106
(
2022
).
17.
J. B.
Weaver
,
J.
Kozuch
,
J. M.
Kirsh
, and
S. G.
Boxer
, “
Nitrile infrared intensities characterize electric fields and hydrogen bonding in protic, aprotic, and protein environments
,”
J. Am. Chem. Soc.
144
,
7562
7567
(
2022
).
18.
S. R.
Dalton
,
A. R.
Vienneau
,
S. R.
Burstein
,
R. J.
Xu
,
S.
Linse
, and
C. H.
Londergan
, “
Cyanylated cysteine reports site-specific changes at protein–protein-binding interfaces without perturbation
,”
Biochemistry
57
,
3702
3712
(
2018
).
19.
K. L.
Kelly
,
S. R.
Dalton
,
R. B.
Wai
,
K.
Ramchandani
,
R. J.
Xu
,
S.
Linse
, and
C. H.
Londergan
, “
Conformational ensembles of calmodulin revealed by nonperturbing site-specific vibrational probe groups
,”
J. Phys. Chem. A
122
,
2947
2955
(
2018
).
20.
J. M.
Schmidt-Engler
,
L.
Blankenburg
,
R.
Zangl
,
J.
Hoffmann
,
N.
Morgner
, and
J.
Bredenbeck
, “
Local dynamics of the photo-switchable protein PYP in ground and signalling state probed by 2D-IR spectroscopy of –SCN labels
,”
Phys. Chem. Chem. Phys.
22
,
22963
22972
(
2021
).
21.
M.
Deiseroth
,
M.
Bonn
, and
E. H. G.
Backus
, “
Orientation independent vibrational dynamics of lipid-bound interfacial water
,”
Phys. Chem. Chem. Phys.
22
,
10142
10148
(
2020
).
22.
E.
Lee
,
X.
You
, and
C. R.
Baiz
, “
Interfacial dynamics in inverted-headgroup lipid membranes
,”
J. Chem. Phys.
156
,
075102
(
2022
).
23.
A. T.
Krummel
and
M. T.
Zanni
, “
DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: Insight into why vibrational spectroscopy is sensitive to DNA structure
,”
J. Phys. Chem. B
110
,
13991
14000
(
2006
).
24.
E. M.
Bruening
,
J.
Schauss
,
T.
Siebert
,
B. P.
Fingerhut
, and
T.
Elsaesser
, “
Vibrational dynamics and couplings of the hydrated RNA backbone: A two-dimensional infrared study
,”
J. Phys. Chem. Lett.
9
,
583
587
(
2018
).
25.
A. J.
Schmitz
,
D. G.
Hogle
,
X. S.
Gai
,
E. E.
Fenlon
,
S. H.
Brewer
, and
M. J.
Tucker
, “
Two-dimensional infrared study of vibrational coupling between azide and nitrile reporters in a RNA nucleoside
,”
J. Phys. Chem. B
120
,
9387
9394
(
2016
).
26.
S.
Williams
, “
Protein–carbohydrate interactions: Learning lessons from nature
,”
Trends Biotechnol.
19
,
356
362
(
2001
).
27.
M.
Takahashi
,
T.
Tsuda
,
Y.
Ikeda
,
K.
Honke
, and
N.
Taniguchi
, “
Role of N-glycans in growth factor signaling
,”
Glycoconjugate J.
20
,
207
212
(
2003
).
28.
H.
Ghazarian
,
B.
Idoni
, and
S. B.
Oppenheimer
, “
A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics
,”
Acta Histochem.
113
,
236
247
(
2011
).
29.
C. R.
Bertozzi
and
L. L.
Kiessling
, “
Chemical glycobiology
,”
Science
291
,
2357
2364
(
2001
).
30. .
Essentials of Glycobiology
,
2nd ed.
, edited by
A.
Varki
,
R. D.
Cummings
,
J. D.
Esko
,
H. H.
Freeze
,
P.
Stanley
,
C. R.
Bertozzi
,
G. W.
Hart
, and
M. E.
Etzler
(
Cold Spring Harbor Laboratory Press
,
Cold Spring Harbor, NY
,
2009
).
31.
I.
Gomes Ferreira
,
M.
Pucci
,
G.
Venturi
,
N.
Malagolini
,
M.
Chiricolo
, and
F.
Dall’Olio
, “
Glycosylation as a main regulator of growth and death factor receptors signaling
,”
Int. J. Mol. Sci.
19
,
580
(
2018
).
32.
Y.
Gong
,
S.
Qin
,
L.
Dai
, and
Z.
Tian
, “
The glycosylation in SARS-CoV-2 and its receptor ACE2
,”
Signal Transduction Targeted Ther.
6
,
396
(
2021
).
33.
L.
Copoiu
and
S.
Malhotra
, “
The current structural glycome landscape and emerging technologies
,”
Curr. Opin. Struct. Biol.
62
,
132
139
(
2020
).
34.
M.
Khajehpour
,
J. L.
Dashnau
, and
J. M.
Vanderkooi
, “
Infrared spectroscopy used to evaluate glycosylation of proteins
,”
Anal. Biochem.
348
,
40
48
(
2006
).
35.
E.
Wiercigroch
,
E.
Szafraniec
,
K.
Czamara
,
M. Z.
Pacia
,
K.
Majzner
,
K.
Kochan
,
A.
Kaczor
,
M.
Baranska
, and
K.
Malek
, “
Raman and infrared spectroscopy of carbohydrates: A review
,”
Spectrochim. Acta, Part A
185
,
317
335
(
2017
).
36.
P.
Pavashe
,
E.
Elamparuthi
,
C.
Hettrich
,
H. M.
Möller
, and
T.
Linker
, “
Synthesis of 2-thiocarbohydrates and their binding to concanavalin A
,”
J. Org. Chem.
81
,
8595
8603
(
2016
).
37.
W.
Fudickar
,
P.
Pavashe
, and
T.
Linker
, “
Thiocarbohydrates on gold nanoparticles: Strong influence of stereocenters on binding affinity and interparticle forces
,”
Chem. -Eur. J.
23
,
8685
8693
(
2017
).
38.
Y. D.
Vankar
and
T.
Linker
, “
Recent developments in the synthesis of 2-C-branched and 1,2-annulated carbohydrates
,”
Eur. J. Org. Chem.
2015
,
7633
7642
.
39.
C.
Cavedon
,
E. T.
Sletten
,
A.
Madani
,
O.
Niemeyer
,
P. H.
Seeberger
, and
B.
Pieber
, “
Visible-light-mediated oxidative debenzylation enables the use of benzyl ethers as temporary protecting groups
,”
Org. Lett.
23
,
514
518
(
2021
).
40.
J.
Bredenbeck
and
P.
Hamm
, “
Versatile small volume closed-cycle flow cell system for transient spectroscopy at high repetition rates
,”
Rev. Sci. Instrum.
74
,
3188
3189
(
2003
).
41.
S.-H.
Shim
and
M. T.
Zanni
, “
How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopiesvia pulse shaping
,”
Phys. Chem. Chem. Phys.
11
,
748
761
(
2009
).
42.
T.
Stensitzki
, “
Skultrafast—A Python package for time-resolved spectroscopy
,” https://github.com/tillsten/skultrafast,
2021
.
43.
J. M.
Schmidt-Engler
,
R.
Zangl
,
P.
Guldan
,
N.
Morgner
, and
J.
Bredenbeck
, “
Exploring the 2D-IR repertoire of the –SCN label to study site-resolved dynamics and solvation in the calcium sensor protein calmodulin
,”
Phys. Chem. Chem. Phys.
22
,
5463
5475
(
2020
).
44.
K.-I.
Oh
,
J.-H.
Choi
,
J.-H.
Lee
,
J.-B.
Han
,
H.
Lee
, and
M.
Cho
, “
Nitrile and thiocyanate IR probes: Molecular dynamics simulation studies
,”
J. Chem. Phys.
128
,
154504
(
2008
).
45.
D. E.
Levin
,
A. J.
Schmitz
,
S. M.
Hines
,
K. J.
Hines
,
M. J.
Tucker
,
S. H.
Brewer
, and
E. E.
Fenlon
, “
Synthesis and evaluation of the sensitivity and vibrational lifetimes of thiocyanate and selenocyanate infrared reporters
,”
RSC Adv.
6
,
36231
36237
(
2016
).
46.
B.
Błasiak
,
A. W.
Ritchie
,
L. J.
Webb
, and
M.
Cho
, “
Vibrational solvatochromism of nitrile infrared probes: Beyond the vibrational Stark dipole approach
,”
Phys. Chem. Chem. Phys.
18
,
18094
18111
(
2016
).
47.
J. M.
Schmidt-Engler
,
L.
Blankenburg
,
B.
Błasiak
,
L. J. G. W.
van Wilderen
,
M.
Cho
, and
J.
Bredenbeck
, “
Vibrational lifetime of the SCN protein label in H2O and D2O reports site-specific solvation and structure changes during PYP’s photocycle
,”
Anal. Chem.
92
,
1024
1032
(
2020
).
48.
R.
Yuan
,
C.
Yan
, and
M.
Fayer
, “
Ion–molecule complex dissociation and formation dynamics in LiCl aqueous solutions from 2D IR spectroscopy
,”
J. Phys. Chem. B
122
,
10582
10592
(
2018
).
49.
D.
Czurlok
,
J.
Gleim
,
J.
Lindner
, and
P.
Vöhringer
, “
Vibrational energy relaxation of thiocyanate ions in liquid-to-supercritical light and heavy water. A Fermi’s golden rule analysis
,”
J. Phys. Chem. Lett.
5
,
3373
3379
(
2014
).
50.
D. J.
Hoffman
and
M. D.
Fayer
, “
CLS next gen: Accurate frequency–frequency correlation functions from center line slope analysis of 2D correlation spectra using artificial neural networks
,”
J. Phys. Chem. A
124
,
5979
5992
(
2020
).
51.
R.
Yuan
and
M. D.
Fayer
, “
Dynamics of water molecules and ions in concentrated lithium chloride solutions probed with ultrafast 2D IR spectroscopy
,”
J. Phys. Chem. B
123
,
7628
7639
(
2019
).
52.
E. E.
Fenn
and
M. D.
Fayer
, “
Extracting 2D IR frequency-frequency correlation functions from two component systems
,”
J. Chem. Phys.
135
,
074502
(
2011
).

Supplementary Material

You do not currently have access to this content.