SchNetPack is a versatile neural network toolbox that addresses both the requirements of method development and the application of atomistic machine learning. Version 2.0 comes with an improved data pipeline, modules for equivariant neural networks, and a PyTorch implementation of molecular dynamics. An optional integration with PyTorch Lightning and the Hydra configuration framework powers a flexible command-line interface. This makes SchNetPack 2.0 easily extendable with a custom code and ready for complex training tasks, such as the generation of 3D molecular structures.
REFERENCES
1.
H. J.
Kulik
, T.
Hammerschmidt
, J.
Schmidt
, S.
Botti
, M. A. L.
Marques
, M.
Boley
, M.
Scheffler
, M.
Todorović
, P.
Rinke
, C.
Oses
et al, “Roadmap on machine learning in electronic structure
,” Electron. Struct.
4
, 023004
(2022
).2.
O. A.
von Lilienfeld
, K.-R.
Müller
, and A.
Tkatchenko
, “Exploring chemical compound space with quantum-based machine learning
,” Nat. Rev. Chem.
4
, 347
–358
(2020
).3.
J. A.
Keith
, V.
Vassilev-Galindo
, B.
Cheng
, S.
Chmiela
, M.
Gastegger
, K.-R.
Müller
, and A.
Tkatchenko
, “Combining machine learning and computational chemistry for predictive insights into chemical systems
,” Chem. Rev.
121
, 9816
–9872
(2021
).4.
F.
Noé
, A.
Tkatchenko
, K.-R.
Müller
, and C.
Clementi
, “Machine learning for molecular simulation
,” Annu. Rev. Phys. Chem.
71
, 361
–390
(2020
).5.
J.
Behler
, “Four generations of high-dimensional neural network potentials
,” Chem. Rev.
121
, 10037
–10072
(2021
).6.
P. O.
Dral
, “Quantum chemistry in the age of machine learning
,” J. Phys. Chem. Lett.
11
, 2336
–2347
(2020
).7.
M.
Rupp
, A.
Tkatchenko
, K.-R.
Müller
, and O. A.
von Lilienfeld
, “Fast and accurate modeling of molecular atomization energies with machine learning
,” Phys. Rev. Lett.
108
, 058301
(2012
).8.
A. P.
Bartók
, M. C.
Payne
, R.
Kondor
, and G.
Csányi
, “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,” Phys. Rev. Lett.
104
, 136403
(2010
).9.
K. T.
Schütt
, F.
Arbabzadah
, S.
Chmiela
, K. R.
Müller
, and A.
Tkatchenko
, “Quantum-chemical insights from deep tensor neural networks
,” Nat. Commun.
8
, 13890
(2017
).10.
K. T.
Schütt
, P.-J.
Kindermans
, H. E.
Sauceda
, S.
Chmiela
, A.
Tkatchenko
, and K.-R.
Müller
, “SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
,” in Advances in Neural Information Processing Systems
(Curran Associates, Inc.
, 2017
), pp. 991
–1001
.11.
F. A.
Faber
, L.
Hutchison
, B.
Huang
, J.
Gilmer
, S. S.
Schoenholz
, G. E.
Dahl
, O.
Vinyals
, S.
Kearnes
, P. F.
Riley
, and O. A.
von Lilienfeld
, “Prediction errors of molecular machine learning models lower than hybrid DFT error
,” J. Chem. Theory Comput.
13
, 5255
–5264
(2017
).12.
F. A.
Faber
, A. S.
Christensen
, B.
Huang
, and O. A.
von Lilienfeld
, “Alchemical and structural distribution based representation for universal quantum machine learning
,” J. Chem. Phys.
148
, 241717
(2018
).13.
O. T.
Unke
and M.
Meuwly
, “PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,” J. Chem. Theory Comput.
15
, 3678
–3693
(2019
).14.
B.
Huang
and O. A.
von Lilienfeld
, “Quantum machine learning using atom-in-molecule-based fragments selected on the fly
,” Nat. Chem.
12
, 945
–951
(2020
).15.
J.
Gasteiger
, J.
Groß
, and S.
Günnemann
, “Directional message passing for molecular graphs
,” in International Conference on Learning Representations (ICLR)
, 2020
.16.
J.
Behler
and M.
Parrinello
, “Generalized neural-network representation of high-dimensional potential-energy surfaces
,” Phys. Rev. Lett.
98
, 146401
(2007
).17.
J.
Behler
, “Constructing high-dimensional neural network potentials: A tutorial review
,” Int. J. Quantum Chem.
115
, 1032
–1050
(2015
).18.
O. T.
Unke
, S.
Chmiela
, H. E.
Sauceda
, M.
Gastegger
, I.
Poltavsky
, K. T.
Schütt
, A.
Tkatchenko
, and K.-R.
Müller
, “Machine learning force fields
,” Chem. Rev.
121
, 10142
–10186
(2021
).19.
I.
Batatia
, D. P.
Kovacs
, G.
Simm
, C.
Ortner
, and G.
Csányi
, “MACE: Higher order equivariant message passing neural networks for fast and accurate force fields
,” in Proceedings of Advances in Neural Information Processing Systems 35
(Curran Associates, Inc., 2022), pp. 11423-11436; available at https://proceedings.neurips.cc/paper_files/paper/2022/hash/4a36c3c51af11ed9f34615b81edb5bbc-Abstract-Conference.html.20.
A. P.
Bartók
, J.
Kermode
, N.
Bernstein
, and G.
Csányi
, “Machine learning a general-purpose interatomic potential for silicon
,” Phys. Rev. X
8
, 041048
(2018
).21.
K. T.
Schütt
, H. E.
Sauceda
, P.-J.
Kindermans
, A.
Tkatchenko
, and K.-R.
Müller
, “SchNet—A deep learning architecture for molecules and materials
,” J. Chem. Phys.
148
, 241722
(2018
).22.
S.
Chmiela
, A.
Tkatchenko
, H. E.
Sauceda
, I.
Poltavsky
, K. T.
Schütt
, and K.-R.
Müller
, “Machine learning of accurate energy-conserving molecular force fields
,” Sci. Adv.
3
, e1603015
(2017
).23.
S.
Chmiela
, H. E.
Sauceda
, K.-R.
Müller
, and A.
Tkatchenko
, “Towards exact molecular dynamics simulations with machine-learned force fields
,” Nat. Commun.
9
, 3887
(2018
).24.
O. T.
Unke
, M.
Stöhr
, S.
Ganscha
, T.
Unterthiner
, H.
Maennel
, S.
Kashubin
, D.
Ahlin
, M.
Gastegger
, L. M.
Sandonas
, A.
Tkatchenko
et al, “Accurate machine learned quantum-mechanical force fields for biomolecular simulations
,” arXiv:2205.08306 (2022
).25.
D.
Lu
, H.
Wang
, M.
Chen
, L.
Lin
, R.
Car
, W.
E
, W.
Jia
, and L.
Zhang
, “86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy
,” Comput. Phys. Commun.
259
, 107624
(2021
).26.
A.
Musaelian
, S.
Batzner
, A.
Johansson
, L.
Sun
, C. J.
Owen
, M.
Kornbluth
, and B.
Kozinsky
, “Learning local equivariant representations for large-scale atomistic dynamics
,” Nat. Commun.
14
, 579
(2023
).27.
J.
Westermayr
, M.
Gastegger
, K. T.
Schütt
, and R. J.
Maurer
, “Perspective on integrating machine learning into computational chemistry and materials science
,” J. Chem. Phys.
154
, 230903
(2021
).28.
L.
Li
, S.
Hoyer
, R.
Pederson
, R.
Sun
, E. D.
Cubuk
, P.
Riley
, and K.
Burke
, “Kohn-Sham equations as regularizer: Building prior knowledge into machine-learned physics
,” Phys. Rev. Lett.
126
, 036401
(2021
).29.
F.
Brockherde
, L.
Vogt
, L.
Li
, M. E.
Tuckerman
, K.
Burke
, and K.-R.
Müller
, “Bypassing the Kohn-Sham equations with machine learning
,” Nat. Commun.
8
, 872
(2017
).30.
A.
Fabrizio
, A.
Grisafi
, B.
Meyer
, M.
Ceriotti
, and C.
Corminboeuf
, “Electron density learning of non-covalent systems
,” Chem. Sci.
10
, 9424
–9432
(2019
).31.
K. T.
Schütt
, M.
Gastegger
, A.
Tkatchenko
, K.-R.
Müller
, and R. J.
Maurer
, “Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
,” Nat. Commun.
10
, 5024
(2019
).32.
O.
Unke
, M.
Bogojeski
, M.
Gastegger
, M.
Geiger
, T.
Smidt
, and K.-R.
Müller
, “SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
,” Adv. Neural Inf. Process. Syst.
34
, 14434
–14447
(2021
).33.
K.
Ghosh
, A.
Stuke
, M.
Todorović
, P. B.
Jørgensen
, M. N.
Schmidt
, A.
Vehtari
, and P.
Rinke
, “Deep learning spectroscopy: Neural networks for molecular excitation spectra
,” Adv. Sci.
6
, 1801367
(2019
).34.
J.
Westermayr
and P.
Marquetand
, “Machine learning and excited-state molecular dynamics
,” Mach. Learn.: Sci. Technol.
1
, 043001
(2020
).35.
J.
Westermayr
and R. J.
Maurer
, “Physically inspired deep learning of molecular excitations and photoemission spectra
,” Chem. Sci.
12
, 10755
–10764
(2021
).36.
P.
Leinen
, M.
Esders
, K. T.
Schütt
, C.
Wagner
, K.-R.
Müller
, and F. S.
Tautz
, “Autonomous robotic nanofabrication with reinforcement learning
,” Sci. Adv.
6
, eabb6987
(2020
).37.
N. W. A.
Gebauer
, M.
Gastegger
, S. S. P.
Hessmann
, K.-R.
Müller
, and K. T.
Schütt
, “Inverse design of 3d molecular structures with conditional generative neural networks
,” Nat. Commun.
13
, 973
(2022
).38.
J.
Köhler
, L.
Klein
, and F.
Noé
, “Equivariant flows: Sampling configurations for multi-body systems with symmetric energies
,” in Proceedings of the 37th International Conference on Machine Learning
, 2019
.39.
Q.
Liu
, M.
Allamanis
, M.
Brockschmidt
, and A.
Gaunt
, “Constrained graph variational autoencoders for molecule design
,” in Advances in Neural Information Processing Systems
(Curran Associates, Inc.
, 2018
), pp. 7795
–7804
.40.
G. N. C.
Simm
, R.
Pinsler
, G.
Csányi
, and J. M.
Hernández-Lobato
, “Symmetry-aware actor-critic for 3D molecular design
,” in International Conference on Learning Representations
, 2021
.41.
R. P.
Joshi
, N. W. A.
Gebauer
, M.
Bontha
, M.
Khazaieli
, R. M.
James
, J. B.
Brown
, and N.
Kumar
, “3D-Scaffold: A deep learning framework to generate 3D coordinates of drug-like molecules with desired scaffolds
,” J. Phys. Chem. B
125
, 12166
–12176
(2021
).42.
A.
Mardt
, L.
Pasquali
, H.
Wu
, and F.
Noé
, “VAMPnets for deep learning of molecular kinetics
,” Nat. Commun.
9
, 5
(2018
).43.
J.
Lederer
, M.
Gastegger
, K. T.
Schütt
, M.
Kampffmeyer
, K.-R.
Müller
, and O. T.
Unke
, “Automatic identification of chemical moieties
,” arXiv:2203.16205 (2022
).44.
J.
Hermann
, Z.
Schätzle
, and F.
Noé
, “Deep-neural-network solution of the electronic Schrödinger equation
,” Nat. Chem.
12
, 891
–897
(2020
).45.
D.
Pfau
, J.
Spencer
, A. d. G.
Matthews
, and W.
Foulkes
, “Ab-initio solution of the many-electron Schrödinger equation with deep neural networks
,” Phys. Rev. Res.
2
, 033429
(2020
).46.
K. T.
Schütt
, P.
Kessel
, M.
Gastegger
, K. A.
Nicoli
, A.
Tkatchenko
, and K.-R.
Müller
, “SchNetPack: A deep learning toolbox for atomistic systems
,” J. Chem. Theory Comput.
15
, 448
–455
(2018
).47.
A.
Paszke
, S.
Gross
, S.
Chintala
, G.
Chanan
, E.
Yang
, Z.
DeVito
, Z.
Lin
, A.
Desmaison
, L.
Antiga
, and A.
Lerer
, “Automatic differentiation in pytorch
,” in NeurIPS 2017 Workshop Autodiff
, 2017
.48.
W.
Falcon
, J.
Borovec
, A.
Wälchli
, N.
Eggert
, J.
Schock
, J.
Jordan
, N.
Skafte
, V.
Bereznyuk
, E.
Harris
, T.
Murrell
et al, Pytorchlightning/pytorch-lightning: 0.7. 6 Release, 2020
.49.
V.
Fomin
, J.
Anmol
, S.
Desroziers
, J.
Kriss
, and A.
Tejani
, “High-level library to help with training neural networks in pytorch
,” https://github.com/pytorch/ignite, 2020
.50.
51.
S.
Doerr
, M.
Majewski
, A.
Pérez
, A.
Krämer
, C.
Clementi
, F.
Noe
, T.
Giorgino
, and G.
De Fabritiis
, “TorchMD: A deep learning framework for molecular simulations
,” J. Chem. Theory Comput.
17
, 2355
–2363
(2021
).52.
M.
Abadi
, A.
Agarwal
, P.
Barham
, E.
Brevdo
, Z.
Chen
, C.
Citro
, G. S.
Corrado
, A.
Davis
, J.
Dean
, M.
Devin
, S.
Ghemawat
, I.
Goodfellow
, A.
Harp
, G.
Irving
, M.
Isard
, Y.
Jia
, R.
Jozefowicz
, L.
Kaiser
, M.
Kudlur
, J.
Levenberg
, D.
Mané
, R.
Monga
, S.
Moore
, D.
Murray
, C.
Olah
, M.
Schuster
, J.
Shlens
, B.
Steiner
, I.
Sutskever
, K.
Talwar
, P.
Tucker
, V.
Vanhoucke
, V.
Vasudevan
, F.
Viégas
, O.
Vinyals
, P.
Warden
, M.
Wattenberg
, M.
Wicke
, Y.
Yu
, and X.
Zheng
, “Tensorflow: Large-scale machine learning on heterogeneous distributed systems
,”arXiv:1603.04467(2016
), software available from tensorflow.org.53.
G.
Arakelyan
and G.
Soghomonyan
(2020
). “Aim: An easy-to-use and performant open-source ml experiment tracking tool
,” Zenodo. 10.5281/zenodo.653639554.
O.
Yadan
, Hydra—A framework for elegantly configuring complex applications, Github, 2019
.55.
See https://github.com/atomistic-machine-learning/schnetpack for SchNetPack code.
56.
See https://schnetpack.readthedocs.io for SchNetPack documentation.
57.
A. H.
Larsen
, J. J.
Mortensen
, J.
Blomqvist
, I. E.
Castelli
, R.
Christensen
, M.
Dułak
, J.
Friis
, M. N.
Groves
, B.
Hammer
, C.
Hargus
, E. D.
Hermes
, P. C.
Jennings
, P. B.
Jensen
, J.
Kermode
, J. R.
Kitchin
, E. L.
Kolsbjerg
, J.
Kubal
, K.
Kaasbjerg
, S.
Lysgaard
, J. B.
Maronsson
, T.
Maxson
, T.
Olsen
, L.
Pastewka
, A.
Peterson
, C.
Rostgaard
, J.
Schiøtz
, O.
Schütt
, M.
Strange
, K. S.
Thygesen
, T.
Vegge
, L.
Vilhelmsen
, M.
Walter
, Z.
Zeng
, and K. W.
Jacobsen
, “The atomic simulation environment—A python library for working with atoms
,” J. Phys.: Condens. Matter
29
, 273002
(2017
).58.
E.
Jones
, T.
Oliphant
, P.
Peterson
et al, SciPy: Open source scientific tools for Python, 2001
.59.
J.
Kermode
and L.
Pastewka
, Matscipy, Github, 2019
.60.
J.
Behler
, “Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,” J. Chem. Phys.
134
, 074106
(2011
).61.
N.
Thomas
, T.
Smidt
, S.
Kearnes
, L.
Yang
, L.
Li
, K.
Kohlhoff
, and P.
Riley
, “Tensor field networks: Rotation-and translation-equivariant neural networks for 3D point clouds
,” arXiv:1802.08219 (2018
).62.
M.
Weiler
, M.
Geiger
, M.
Welling
, W.
Boomsma
, and T. S.
Cohen
, “3D steerable CNNs: Learning rotationally equivariant features in volumetric data
,” in Advances in Neural Information Processing Systems 31
(Curran Associates, Inc.
, 2018
).63.
J.
Gilmer
, S. S.
Schoenholz
, P. F.
Riley
, O.
Vinyals
, and G. E.
Dahl
, “Neural message passing for quantum chemistry
,” in International Conference on Machine Learning
(PMLR
, 2017
), pp. 1263
–1272
.64.
M.
Gastegger
, K. T.
Schütt
, and K.-R.
Müller
, “Machine learning of solvent effects on molecular spectra and reactions
,” Chem. Sci.
12
, 11473
–11483
(2021
).65.
K.
Schütt
, O.
Unke
, and M.
Gastegger
, “Equivariant message passing for the prediction of tensorial properties and molecular spectra
,” in Proceedings of the 38th International Conference on Machine Learning
(Proceedings of Machine Learning Research, PMLR
, 2021
), Vol. 139, pp. 9377
–9388
.66.
S.
Batzner
, A.
Musaelian
, L.
Sun
, M.
Geiger
, J. P.
Mailoa
, M.
Kornbluth
, N.
Molinari
, T. E.
Smidt
, and B.
Kozinsky
, “E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,” Nat. Commun.
13
, 2453
(2022
).67.
68.
M.
Gastegger
, J.
Behler
, and P.
Marquetand
, “Machine learning molecular dynamics for the simulation of infrared spectra
,” Chem. Sci.
8
, 6924
–6935
(2017
).69.
M.
Veit
, D. M.
Wilkins
, Y.
Yang
, R. A.
DiStasio
, Jr., and M.
Ceriotti
, “Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
,” J. Chem. Phys.
153
, 024113
(2020
).70.
J. F.
Ziegler
and J. P.
Biersack
, “The stopping and range of ions in matter
,” in Treatise on Heavy-Ion Science
(Springer
, 1985
), pp. 93
–129
.71.
O. T.
Unke
, S.
Chmiela
, M.
Gastegger
, K. T.
Schütt
, H. E.
Sauceda
, and K.-R.
Müller
, “SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
,” Nat. Commun.
12
, 7273
(2021
).72.
R.
Ramakrishnan
, P. O.
Dral
, M.
Rupp
, and O. A.
von Lilienfeld
, “Quantum chemistry structures and properties of 134 kilo molecules
,” Sci. Data
1
, 140022
(2014
).73.
A. S.
Christensen
and O. A.
von Lilienfeld
, “On the role of gradients for machine learning of molecular energies and forces
,” Mach. Learn.: Sci. Technol.
1
, 045018
(2020
).74.
S.
Chmiela
, V.
Vassilev-Galindo
, O. T.
Unke
, A.
Kabylda
, H. E.
Sauceda
, A.
Tkatchenko
, and K.-R.
Müller
, “Accurate global machine learning force fields for molecules with hundreds of atoms
,” Sci. Adv.
9
(2
), eadf0873
(2023
).75.
B.
Olsthoorn
, R. M.
Geilhufe
, S. S.
Borysov
, and A. V.
Balatsky
, “Band gap prediction for large organic crystal structures with machine learning
,” Adv. Quantum Technol.
2
, 1900023
(2019
).76.
A.
Jain
, S. P.
Ong
, G.
Hautier
, W.
Chen
, W. D.
Richards
, S.
Dacek
, S.
Cholia
, D.
Gunter
, D.
Skinner
, G.
Ceder
, and K. A.
Persson
, “Commentary: The materials project: A materials genome approach to accelerating materials innovation
,” APL Mater.
1
, 011002
(2013
).77.
See https://pytorch-lightning.readthedocs.io for PyTorch Lightning documentation.
78.
F.
Neese
, “The ORCA program system
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
, 73
–78
(2012
).79.
A.
Laio
and M.
Parrinello
, “Escaping free-energy minima
,” Proc. Natl. Acad. Sci. U. S. A.
99
, 12562
–12566
(2002
).80.
H. J. C.
Berendsen
, J. P. M.
Postma
, W. F.
Van Gunsteren
, A.
DiNola
, and J. R.
Haak
, “Molecular dynamics with coupling to an external bath
,” J. Chem. Phys.
81
, 3684
–3690
(1984
).81.
G.
Bussi
and M.
Parrinello
, “Accurate sampling using Langevin dynamics
,” Phys. Rev. E
75
, 056707
(2007
).82.
G. J.
Martyna
, M. L.
Klein
, and M.
Tuckerman
, “Nosé–Hoover chains: The canonical ensemble via continuous dynamics
,” J. Chem. Phys.
97
, 2635
–2643
(1992
).83.
M.
Ceriotti
, G.
Bussi
, and M.
Parrinello
, “Colored-noise thermostats à la carte
,” J. Chem. Theory Comput.
6
, 1170
–1180
(2010
).84.
M.
Ceriotti
, M.
Parrinello
, T. E.
Markland
, and D. E.
Manolopoulos
, “Efficient stochastic thermostatting of path integral molecular dynamics
,” J. Chem. Phys.
133
, 124104
(2010
).85.
M.
Rossi
, M.
Ceriotti
, and D. E.
Manolopoulos
, “How to remove the spurious resonances from ring polymer molecular dynamics
,” J. Chem. Phys.
140
, 234116
(2014
).86.
F.
Uhl
, D.
Marx
, and M.
Ceriotti
, “Accelerated path integral methods for atomistic simulations at ultra-low temperatures
,” J. Chem. Phys.
145
, 054101
(2016
).87.
G. J.
Martyna
, M. E.
Tuckerman
, D. J.
Tobias
, and M. L.
Klein
, “Explicit reversible integrators for extended systems dynamics
,” Mol. Phys.
87
, 1117
–1157
(1996
).88.
V.
Kapil
, M.
Rossi
, O.
Marsalek
, R.
Petraglia
, Y.
Litman
, T.
Spura
, B.
Cheng
, A.
Cuzzocrea
, R. H.
Meißner
, D. M.
Wilkins
et al, “i-PI 2.0: A universal force engine for advanced molecular simulations
,” Comput. Phys. Commun.
236
, 214
–223
(2019
).89.
N.
Gebauer
, M.
Gastegger
, and K.
Schütt
, “Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
,” in Advances in Neural Information Processing Systems 32
, edited by H.
Wallach
, H.
Larochelle
, A.
Beygelzimer
, F.
d’Alché-Buc
, E.
Fox
, and R.
Garnett
(Curran Associates, Inc.
, 2019
), pp. 7566
–7578
.90.
See https://github.com/atomistic-machine-learning/schnetpack-gschnet for cG-SchNet code.
91.
M.
Ceriotti
, “Unsupervised machine learning in atomistic simulations, between predictions and understanding
,” J. Chem. Phys.
150
, 150901
(2019
).92.
A. P.
Thompson
, H. M.
Aktulga
, R.
Berger
, D. S.
Bolintineanu
, W. M.
Brown
, P. S.
Crozier
, P. J.
in’t Veld
, A.
Kohlmeyer
, S. G.
Moore
, T. D.
Nguyen
, R.
Shan
, M. J.
Stevens
, J.
Tranchida
, C.
Trott
, and S. J.
Plimpton
, “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,” Comp. Phys. Comm.
271
, 108171
(2022
).93.
M.
Thomas
, M.
Brehm
, R.
Fligg
, P.
Vöhringer
, and B.
Kirchner
, “Computing vibrational spectra from ab initio molecular dynamics
,” Phys. Chem. Chem. Phys.
15
, 6608
–6622
(2013
).94.
95.
See https://github.com/atomistic-machine-learning/schnetpack-gschnet for cG-SchNet code.
© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.