SchNetPack is a versatile neural network toolbox that addresses both the requirements of method development and the application of atomistic machine learning. Version 2.0 comes with an improved data pipeline, modules for equivariant neural networks, and a PyTorch implementation of molecular dynamics. An optional integration with PyTorch Lightning and the Hydra configuration framework powers a flexible command-line interface. This makes SchNetPack 2.0 easily extendable with a custom code and ready for complex training tasks, such as the generation of 3D molecular structures.

1.
H. J.
Kulik
,
T.
Hammerschmidt
,
J.
Schmidt
,
S.
Botti
,
M. A. L.
Marques
,
M.
Boley
,
M.
Scheffler
,
M.
Todorović
,
P.
Rinke
,
C.
Oses
et al, “
Roadmap on machine learning in electronic structure
,”
Electron. Struct.
4
,
023004
(
2022
).
2.
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Exploring chemical compound space with quantum-based machine learning
,”
Nat. Rev. Chem.
4
,
347
358
(
2020
).
3.
J. A.
Keith
,
V.
Vassilev-Galindo
,
B.
Cheng
,
S.
Chmiela
,
M.
Gastegger
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Combining machine learning and computational chemistry for predictive insights into chemical systems
,”
Chem. Rev.
121
,
9816
9872
(
2021
).
4.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
5.
J.
Behler
, “
Four generations of high-dimensional neural network potentials
,”
Chem. Rev.
121
,
10037
10072
(
2021
).
6.
P. O.
Dral
, “
Quantum chemistry in the age of machine learning
,”
J. Phys. Chem. Lett.
11
,
2336
2347
(
2020
).
7.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
8.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
9.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K. R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,”
Nat. Commun.
8
,
13890
(
2017
).
10.
K. T.
Schütt
,
P.-J.
Kindermans
,
H. E.
Sauceda
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2017
), pp.
991
1001
.
11.
F. A.
Faber
,
L.
Hutchison
,
B.
Huang
,
J.
Gilmer
,
S. S.
Schoenholz
,
G. E.
Dahl
,
O.
Vinyals
,
S.
Kearnes
,
P. F.
Riley
, and
O. A.
von Lilienfeld
, “
Prediction errors of molecular machine learning models lower than hybrid DFT error
,”
J. Chem. Theory Comput.
13
,
5255
5264
(
2017
).
12.
F. A.
Faber
,
A. S.
Christensen
,
B.
Huang
, and
O. A.
von Lilienfeld
, “
Alchemical and structural distribution based representation for universal quantum machine learning
,”
J. Chem. Phys.
148
,
241717
(
2018
).
13.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
14.
B.
Huang
and
O. A.
von Lilienfeld
, “
Quantum machine learning using atom-in-molecule-based fragments selected on the fly
,”
Nat. Chem.
12
,
945
951
(
2020
).
15.
J.
Gasteiger
,
J.
Groß
, and
S.
Günnemann
, “
Directional message passing for molecular graphs
,” in
International Conference on Learning Representations (ICLR)
,
2020
.
16.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
17.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
18.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
10186
(
2021
).
19.
I.
Batatia
,
D. P.
Kovacs
,
G.
Simm
,
C.
Ortner
, and
G.
Csányi
, “
MACE: Higher order equivariant message passing neural networks for fast and accurate force fields
,” in
Proceedings of Advances in Neural Information Processing Systems 35
(Curran Associates, Inc., 2022), pp. 11423-11436; available at https://proceedings.neurips.cc/paper_files/paper/2022/hash/4a36c3c51af11ed9f34615b81edb5bbc-Abstract-Conference.html.
20.
A. P.
Bartók
,
J.
Kermode
,
N.
Bernstein
, and
G.
Csányi
, “
Machine learning a general-purpose interatomic potential for silicon
,”
Phys. Rev. X
8
,
041048
(
2018
).
21.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet—A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
22.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
23.
S.
Chmiela
,
H. E.
Sauceda
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Towards exact molecular dynamics simulations with machine-learned force fields
,”
Nat. Commun.
9
,
3887
(
2018
).
24.
O. T.
Unke
,
M.
Stöhr
,
S.
Ganscha
,
T.
Unterthiner
,
H.
Maennel
,
S.
Kashubin
,
D.
Ahlin
,
M.
Gastegger
,
L. M.
Sandonas
,
A.
Tkatchenko
et al, “
Accurate machine learned quantum-mechanical force fields for biomolecular simulations
,” arXiv:2205.08306 (
2022
).
25.
D.
Lu
,
H.
Wang
,
M.
Chen
,
L.
Lin
,
R.
Car
,
W.
E
,
W.
Jia
, and
L.
Zhang
, “
86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy
,”
Comput. Phys. Commun.
259
,
107624
(
2021
).
26.
A.
Musaelian
,
S.
Batzner
,
A.
Johansson
,
L.
Sun
,
C. J.
Owen
,
M.
Kornbluth
, and
B.
Kozinsky
, “
Learning local equivariant representations for large-scale atomistic dynamics
,”
Nat. Commun.
14
,
579
(
2023
).
27.
J.
Westermayr
,
M.
Gastegger
,
K. T.
Schütt
, and
R. J.
Maurer
, “
Perspective on integrating machine learning into computational chemistry and materials science
,”
J. Chem. Phys.
154
,
230903
(
2021
).
28.
L.
Li
,
S.
Hoyer
,
R.
Pederson
,
R.
Sun
,
E. D.
Cubuk
,
P.
Riley
, and
K.
Burke
, “
Kohn-Sham equations as regularizer: Building prior knowledge into machine-learned physics
,”
Phys. Rev. Lett.
126
,
036401
(
2021
).
29.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K.-R.
Müller
, “
Bypassing the Kohn-Sham equations with machine learning
,”
Nat. Commun.
8
,
872
(
2017
).
30.
A.
Fabrizio
,
A.
Grisafi
,
B.
Meyer
,
M.
Ceriotti
, and
C.
Corminboeuf
, “
Electron density learning of non-covalent systems
,”
Chem. Sci.
10
,
9424
9432
(
2019
).
31.
K. T.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K.-R.
Müller
, and
R. J.
Maurer
, “
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
,”
Nat. Commun.
10
,
5024
(
2019
).
32.
O.
Unke
,
M.
Bogojeski
,
M.
Gastegger
,
M.
Geiger
,
T.
Smidt
, and
K.-R.
Müller
, “
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
,”
Adv. Neural Inf. Process. Syst.
34
,
14434
14447
(
2021
).
33.
K.
Ghosh
,
A.
Stuke
,
M.
Todorović
,
P. B.
Jørgensen
,
M. N.
Schmidt
,
A.
Vehtari
, and
P.
Rinke
, “
Deep learning spectroscopy: Neural networks for molecular excitation spectra
,”
Adv. Sci.
6
,
1801367
(
2019
).
34.
J.
Westermayr
and
P.
Marquetand
, “
Machine learning and excited-state molecular dynamics
,”
Mach. Learn.: Sci. Technol.
1
,
043001
(
2020
).
35.
J.
Westermayr
and
R. J.
Maurer
, “
Physically inspired deep learning of molecular excitations and photoemission spectra
,”
Chem. Sci.
12
,
10755
10764
(
2021
).
36.
P.
Leinen
,
M.
Esders
,
K. T.
Schütt
,
C.
Wagner
,
K.-R.
Müller
, and
F. S.
Tautz
, “
Autonomous robotic nanofabrication with reinforcement learning
,”
Sci. Adv.
6
,
eabb6987
(
2020
).
37.
N. W. A.
Gebauer
,
M.
Gastegger
,
S. S. P.
Hessmann
,
K.-R.
Müller
, and
K. T.
Schütt
, “
Inverse design of 3d molecular structures with conditional generative neural networks
,”
Nat. Commun.
13
,
973
(
2022
).
38.
J.
Köhler
,
L.
Klein
, and
F.
Noé
, “
Equivariant flows: Sampling configurations for multi-body systems with symmetric energies
,” in
Proceedings of the 37th International Conference on Machine Learning
,
2019
.
39.
Q.
Liu
,
M.
Allamanis
,
M.
Brockschmidt
, and
A.
Gaunt
, “
Constrained graph variational autoencoders for molecule design
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2018
), pp.
7795
7804
.
40.
G. N. C.
Simm
,
R.
Pinsler
,
G.
Csányi
, and
J. M.
Hernández-Lobato
, “
Symmetry-aware actor-critic for 3D molecular design
,” in
International Conference on Learning Representations
,
2021
.
41.
R. P.
Joshi
,
N. W. A.
Gebauer
,
M.
Bontha
,
M.
Khazaieli
,
R. M.
James
,
J. B.
Brown
, and
N.
Kumar
, “
3D-Scaffold: A deep learning framework to generate 3D coordinates of drug-like molecules with desired scaffolds
,”
J. Phys. Chem. B
125
,
12166
12176
(
2021
).
42.
A.
Mardt
,
L.
Pasquali
,
H.
Wu
, and
F.
Noé
, “
VAMPnets for deep learning of molecular kinetics
,”
Nat. Commun.
9
,
5
(
2018
).
43.
J.
Lederer
,
M.
Gastegger
,
K. T.
Schütt
,
M.
Kampffmeyer
,
K.-R.
Müller
, and
O. T.
Unke
, “
Automatic identification of chemical moieties
,” arXiv:2203.16205 (
2022
).
44.
J.
Hermann
,
Z.
Schätzle
, and
F.
Noé
, “
Deep-neural-network solution of the electronic Schrödinger equation
,”
Nat. Chem.
12
,
891
897
(
2020
).
45.
D.
Pfau
,
J.
Spencer
,
A. d. G.
Matthews
, and
W.
Foulkes
, “
Ab-initio solution of the many-electron Schrödinger equation with deep neural networks
,”
Phys. Rev. Res.
2
,
033429
(
2020
).
46.
K. T.
Schütt
,
P.
Kessel
,
M.
Gastegger
,
K. A.
Nicoli
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNetPack: A deep learning toolbox for atomistic systems
,”
J. Chem. Theory Comput.
15
,
448
455
(
2018
).
47.
A.
Paszke
,
S.
Gross
,
S.
Chintala
,
G.
Chanan
,
E.
Yang
,
Z.
DeVito
,
Z.
Lin
,
A.
Desmaison
,
L.
Antiga
, and
A.
Lerer
, “
Automatic differentiation in pytorch
,” in
NeurIPS 2017 Workshop Autodiff
,
2017
.
48.
W.
Falcon
,
J.
Borovec
,
A.
Wälchli
,
N.
Eggert
,
J.
Schock
,
J.
Jordan
,
N.
Skafte
,
V.
Bereznyuk
,
E.
Harris
,
T.
Murrell
et al, Pytorchlightning/pytorch-lightning: 0.7. 6 Release,
2020
.
49.
V.
Fomin
,
J.
Anmol
,
S.
Desroziers
,
J.
Kriss
, and
A.
Tejani
, “
High-level library to help with training neural networks in pytorch
,” https://github.com/pytorch/ignite,
2020
.
50.
M.
Geiger
and
T.
Smidt
, “
e3nn: Euclidean neural networks
,”arXiv:2207.09453(
2022
).
51.
S.
Doerr
,
M.
Majewski
,
A.
Pérez
,
A.
Krämer
,
C.
Clementi
,
F.
Noe
,
T.
Giorgino
, and
G.
De Fabritiis
, “
TorchMD: A deep learning framework for molecular simulations
,”
J. Chem. Theory Comput.
17
,
2355
2363
(
2021
).
52.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
Tensorflow: Large-scale machine learning on heterogeneous distributed systems
,”arXiv:1603.04467(
2016
), software available from tensorflow.org.
53.
G.
Arakelyan
and
G.
Soghomonyan
(
2020
). “
Aim: An easy-to-use and performant open-source ml experiment tracking tool
,” Zenodo. 10.5281/zenodo.6536395
54.
O.
Yadan
, Hydra—A framework for elegantly configuring complex applications, Github,
2019
.
56.
See https://schnetpack.readthedocs.io for SchNetPack documentation.
57.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
58.
E.
Jones
,
T.
Oliphant
,
P.
Peterson
et al, SciPy: Open source scientific tools for Python,
2001
.
59.
J.
Kermode
and
L.
Pastewka
, Matscipy, Github,
2019
.
60.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
61.
N.
Thomas
,
T.
Smidt
,
S.
Kearnes
,
L.
Yang
,
L.
Li
,
K.
Kohlhoff
, and
P.
Riley
, “
Tensor field networks: Rotation-and translation-equivariant neural networks for 3D point clouds
,” arXiv:1802.08219 (
2018
).
62.
M.
Weiler
,
M.
Geiger
,
M.
Welling
,
W.
Boomsma
, and
T. S.
Cohen
, “
3D steerable CNNs: Learning rotationally equivariant features in volumetric data
,” in
Advances in Neural Information Processing Systems 31
(
Curran Associates, Inc.
,
2018
).
63.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, “
Neural message passing for quantum chemistry
,” in
International Conference on Machine Learning
(
PMLR
,
2017
), pp.
1263
1272
.
64.
M.
Gastegger
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of solvent effects on molecular spectra and reactions
,”
Chem. Sci.
12
,
11473
11483
(
2021
).
65.
K.
Schütt
,
O.
Unke
, and
M.
Gastegger
, “
Equivariant message passing for the prediction of tensorial properties and molecular spectra
,” in
Proceedings of the 38th International Conference on Machine Learning
(
Proceedings of Machine Learning Research, PMLR
,
2021
), Vol. 139, pp.
9377
9388
.
66.
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
, “
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,”
Nat. Commun.
13
,
2453
(
2022
).
67.
D.
Hendrycks
and
K.
Gimpel
, “
Gaussian error linear units (GELUs)
,” arXiv:1606.08415 (
2016
).
68.
M.
Gastegger
,
J.
Behler
, and
P.
Marquetand
, “
Machine learning molecular dynamics for the simulation of infrared spectra
,”
Chem. Sci.
8
,
6924
6935
(
2017
).
69.
M.
Veit
,
D. M.
Wilkins
,
Y.
Yang
,
R. A.
DiStasio
, Jr.
, and
M.
Ceriotti
, “
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
,”
J. Chem. Phys.
153
,
024113
(
2020
).
70.
J. F.
Ziegler
and
J. P.
Biersack
, “
The stopping and range of ions in matter
,” in
Treatise on Heavy-Ion Science
(
Springer
,
1985
), pp.
93
129
.
71.
O. T.
Unke
,
S.
Chmiela
,
M.
Gastegger
,
K. T.
Schütt
,
H. E.
Sauceda
, and
K.-R.
Müller
, “
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
,”
Nat. Commun.
12
,
7273
(
2021
).
72.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
, “
Quantum chemistry structures and properties of 134 kilo molecules
,”
Sci. Data
1
,
140022
(
2014
).
73.
A. S.
Christensen
and
O. A.
von Lilienfeld
, “
On the role of gradients for machine learning of molecular energies and forces
,”
Mach. Learn.: Sci. Technol.
1
,
045018
(
2020
).
74.
S.
Chmiela
,
V.
Vassilev-Galindo
,
O. T.
Unke
,
A.
Kabylda
,
H. E.
Sauceda
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Accurate global machine learning force fields for molecules with hundreds of atoms
,”
Sci. Adv.
9
(
2
),
eadf0873
(
2023
).
75.
B.
Olsthoorn
,
R. M.
Geilhufe
,
S. S.
Borysov
, and
A. V.
Balatsky
, “
Band gap prediction for large organic crystal structures with machine learning
,”
Adv. Quantum Technol.
2
,
1900023
(
2019
).
76.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
77.
See https://pytorch-lightning.readthedocs.io for PyTorch Lightning documentation.
78.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
79.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
80.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
Van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
81.
G.
Bussi
and
M.
Parrinello
, “
Accurate sampling using Langevin dynamics
,”
Phys. Rev. E
75
,
056707
(
2007
).
82.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
,
2635
2643
(
1992
).
83.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
, “
Colored-noise thermostats à la carte
,”
J. Chem. Theory Comput.
6
,
1170
1180
(
2010
).
84.
M.
Ceriotti
,
M.
Parrinello
,
T. E.
Markland
, and
D. E.
Manolopoulos
, “
Efficient stochastic thermostatting of path integral molecular dynamics
,”
J. Chem. Phys.
133
,
124104
(
2010
).
85.
M.
Rossi
,
M.
Ceriotti
, and
D. E.
Manolopoulos
, “
How to remove the spurious resonances from ring polymer molecular dynamics
,”
J. Chem. Phys.
140
,
234116
(
2014
).
86.
F.
Uhl
,
D.
Marx
, and
M.
Ceriotti
, “
Accelerated path integral methods for atomistic simulations at ultra-low temperatures
,”
J. Chem. Phys.
145
,
054101
(
2016
).
87.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
, “
Explicit reversible integrators for extended systems dynamics
,”
Mol. Phys.
87
,
1117
1157
(
1996
).
88.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
et al, “
i-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
).
89.
N.
Gebauer
,
M.
Gastegger
, and
K.
Schütt
, “
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
,” in
Advances in Neural Information Processing Systems 32
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alché-Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates, Inc.
,
2019
), pp.
7566
7578
.
91.
M.
Ceriotti
, “
Unsupervised machine learning in atomistic simulations, between predictions and understanding
,”
J. Chem. Phys.
150
,
150901
(
2019
).
92.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comp. Phys. Comm.
271
,
108171
(
2022
).
93.
M.
Thomas
,
M.
Brehm
,
R.
Fligg
,
P.
Vöhringer
, and
B.
Kirchner
, “
Computing vibrational spectra from ab initio molecular dynamics
,”
Phys. Chem. Chem. Phys.
15
,
6608
6622
(
2013
).
94.
F.
Jensen
,
Introduction to Computational Chemistry
(
Wiley
,
2007
).

Supplementary Material

You do not currently have access to this content.