Polymer gel electrolytes (PGE) have seen a renewed interest in their development because they have high ionic conductivities but low electrochemical degradation and flammability. PGEs are formed by mixing a liquid lithium-ion electrolyte with a polymer at a sufficiently large concentration to form a gel. PGEs have been extensively studied, but the direct connection between their microscopic structure and macroscopic properties remains controversial. For example, it is still unknown whether the polymer in the PGE acts as an inert, stabilizing scaffold for the electrolyte or it interacts with the ionic components. Here, a PGE composed of a prototypical lithium-carbonate electrolyte and polyacrylonitrile (PAN) is pursued at both microscopic and macroscopic levels. Specifically, this study focused on describing the microscopic and macroscopic changes in the PGE at different polymer concentrations. The results indicated that the polymer-ion and polymer–polymer interactions are strongly dependent on the concentration of the polymer and the lithium salt. In particular, the polymer interacts with itself at very high PAN concentrations (10% weight) resulting in a viscous gel. However, the conductivity and dynamics of the electrolyte liquid components are significantly less affected by the addition of the polymer. The observations are explained in terms of the PGE structure, which transitions from a polymer solution to a gel, containing a polymer matrix and disperse electrolyte, at low and high PAN concentrations, respectively. The results highlight the critical role that the polymer concentration plays in determining both the macroscopic properties of the system and the molecular structure of the PGE.

1.
K. E.
Aifantis
,
S. A.
Hackney
, and
R. V.
Kumar
,
High Energy Density Lithium Batteries
(
Wiley Online Library
,
2010
).
2.
M.
Armand
and
J.-M.
Tarascon
,
Nature
451
,
652
(
2008
).
3.
B.
Dunn
,
H.
Kamath
, and
J.-M.
Tarascon
,
Science
334
,
928
(
2011
).
4.
5.
K.
Xu
,
Chem. Rev.
114
,
11503
(
2014
).
6.
G.-A.
Nazri
and
G.
Pistoia
,
Lithium Batteries: Science and Technology
(
Springer Science & Business Media
,
2008
).
7.
W. A. v. S. B.
Scrosati
,
Advances in Lithium-Ion Batteries
(
Springer Science & Business Media
,
2002
).
8.
X.
Cheng
et al,
Adv. Energy Mater.
8
,
1702184
(
2018
).
9.
K. S.
Ngai
et al,
Ionics
22
,
1259
(
2016
).
10.
A.
Manuel Stephan
,
Eur. Polym. J.
42
,
21
(
2006
).
11.
P.
Jayathilaka
et al,
Solid State Ionics
156
,
179
(
2003
).
12.
D.
Ostrovskii
et al,
Solid State Ionics
106
,
19
(
1998
).
13.
D.
Ostrovskii
et al,
J. Chem. Phys.
109
,
7618
(
1998
).
14.
Y.
Aihara
,
S.
Arai
, and
K.
Hayamizu
,
Electrochim. Acta
45
,
1321
(
2000
).
15.
R.
Kumar
and
S. S.
Sekhon
,
Ionics
10
,
10
(
2004
).
16.
P.
Johansson
et al,
J. Phys. Chem. B
107
,
12622
(
2003
).
17.
D.
Ostrovskii
,
M.
Edvardsson
, and
P.
Jacobsson
,
J. Raman Spectrosc.
34
,
40
(
2003
).
18.
O.
Bohnke
et al,
Solid State Ionics
66
,
105
(
1993
).
19.
H.
Ericson
et al,
Electrochim. Acta
45
,
1409
(
2000
).
20.
S.
Panero
and
B.
Scrosati
,
J. Power Sources
90
,
13
(
2000
).
21.
C.
Svanberg
et al,
J. Chem. Phys.
111
,
11216
(
1999
).
22.
N.
Karan
et al,
Solid State Ionics
179
,
689
(
2008
).
23.
F.
Croce
et al,
Nature
394
,
456
(
1998
).
24.
F.
Croce
et al,
J. Phys. Chem. B
103
,
10632
(
1999
).
25.
D.
Bamford
et al,
J. Chem. Phys.
118
,
9420
(
2003
).
26.
B.
Huang
et al,
Solid State Ionics
91
,
279
(
1996
).
27.
P.
Stallworth
et al,
Solid State Ionics
73
,
119
(
1994
).
28.
K.
Abraham
and
M.
Alamgir
,
Solid State Ionics
70-71
,
20
(
1994
).
29.
Z.
Wang
et al,
J. Electrochem. Soc.
144
,
778
(
1997
).
30.
Z.
Wang
et al,
Solid State Ionics
121
,
141
(
1999
).
31.
H. S.
Choe
et al,
Chem. Mater.
9
,
369
(
1997
).
32.
Z.
Bashir
,
S. P.
Church
, and
D. M.
Price
,
Acta Polym.
44
,
211
(
1993
).
33.
Z.
Bashir
,
S. K.
Atureliya
, and
S. P.
Church
,
J. Mater. Sci.
28
,
2721
(
1993
).
35.
Z.
Bashir
,
J. Polym. Sci., Part B: Polym. Phys.
30
,
1299
(
1992
).
36.
Z.
Wang
et al,
Electrochim. Acta
41
,
1443
(
1996
).
37.
A.
Ferry
et al,
Electrochim. Acta
45
,
1237
(
2000
).
38.
X.
Chen
and
D. G.
Kuroda
,
J. Chem. Phys.
153
,
164502
(
2020
).
39.
B.
Dereka
et al,
J. Phys. Chem. B
126
,
278
(
2021
).
40.
Z.
Ren
et al,
J. Phys. Chem. Lett.
5
,
1541
(
2014
).
41.
Y.
Cui
et al,
Phys. Chem. Chem. Phys.
18
,
31471
(
2016
).
42.
A.
Tamimi
,
H. E.
Bailey
, and
M. D.
Fayer
,
J. Phys. Chem. B
120
,
7488
(
2016
).
43.
K.
Dahl
et al,
J. Chem. Phys.
123
,
084504
(
2005
).
44.
S. R.
Galle Kankanamge
and
D. G.
Kuroda
,
Phys. Chem. Chem. Phys.
21
,
833
(
2019
).
45.
Z.
Bashir
,
J. Macromol. Sci. Phys.
40
,
41
(
2001
).
46.
Z.
Bashir
and
S.
Rastogi
,
J. Macromol. Sci. Phys.
44
,
55
(
2005
).
47.
M.
Reading
,
D.
Elliot
, and
V.
Hill
, in
Proceedings of the 21st North American Thermal Analysis Society Conference
,
Atlanta, Georgia
,
1992
, p.
145
.
48.
M. C.
Asplund
,
M. T.
Zanni
, and
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
8219
(
2000
).
49.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
50.
Y. S.
Kim
,
J.
Wang
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
109
,
7511
(
2005
).
51.
Y. S.
Huang
and
J. L.
Koenig
,
Appl. Spectrosc.
25
,
620
(
1971
).
52.
B.
Huang
et al,
Solid State Ionics
85
,
79
(
1996
).
53.
L.
Tan
,
A.
Wan
, and
D.
Pan
,
Polym. Int.
60
,
1047
(
2011
).
54.
K.
Kwac
and
M.
Cho
,
J. Phys. Chem. A
107
,
5903
(
2003
).
55.
P. L.
Kramer
et al,
J. Chem. Phys.
142
,
184505
(
2015
).
56.
T.
Brinzer
and
S.
Garrett-Roe
,
J. Chem. Phys.
147
,
194501
(
2017
).
57.
O.
Bohnke
et al,
Solid State Ionics
66
,
97
(
1993
).
58.
G.
Henrici-Olive
and
S.
Olivé
,
Chemistry
(
Springer
,
1979
), p.
123
.
59.
S.
Rosenbaum
,
J. Appl. Polym. Sci.
9
,
2071
(
1965
).
60.
M.
Armand
,
Solid State Ionics
9-10
,
745
(
1983
).
61.
B. L.
Papke
,
M. A.
Ratner
, and
D. F.
Shriver
,
J. Electrochem. Soc.
129
,
1694
(
1982
).
62.
D. F.
Shriver
et al,
Solid State Ionics
5
,
83
(
1981
).
63.
P.
Chu
and
Z.-P.
He
,
Polymer
42
,
4743
(
2001
).

Supplementary Material

You do not currently have access to this content.