In-situ polymer capping of cesium lead bromide (CsPbBr3) nanocrystals with polymethyl acrylate is an effective approach to improve the colloidal stability in the polar medium and thus extends their use in photocatalysis. The photoinduced electron transfer properties of polymethyl acrylate (PMA)-capped CsPbBr3 nanocrystals have been probed using surface-bound viologen molecules with different alkyl chains as electron acceptors. The apparent association constant (Kapp) obtained for the binding of viologen molecules with PMA-capped CsPbBr3 was 2.3 × 107 M−1, which is an order of magnitude greater than that obtained with oleic acid/oleylamine-capped CsPbBr3. Although the length of the alkyl chain of the viologen molecule did not show any impact on the electron transfer rate constant, it influenced the charge separation efficiency and net electron transfer quantum yield. Viologen moieties with a shorter alkyl chain length exhibited a charge separation efficiency of 72% compared with 50% for the longer chain alkyl chain length viologens. Implications of polymer-capped CsPbBr3 perovskite nanocrystals for carrying out photocatalytic reduction in the polar medium are discussed.

1.
Y.
Li
,
Q.
Shu
,
Q.
Du
,
Y.
Dai
,
S.
Zhao
,
J.
Zhang
,
L.
Li
, and
K.
Chen
, “
Surface modification for improving the photocatalytic polymerization of 3,4-ethylenedioxythiophene over inorganic lead halide perovskite quantum dots
,”
ACS Appl. Mater. Interfaces
12
(
1
),
451
460
(
2020
).
2.
J.
Chen
,
C. W.
Dong
,
H.
Idriss
,
O. F.
Mohammed
, and
O. M.
Bakr
, “
Metal halide perovskites for solar-to-chemical fuel conversion
,”
Adv. Energy Mater.
10
(
13
),
1902433
(
2020
).
3.
T.
Matsui
,
T.
Yamamoto
,
T.
Nishihara
,
R.
Morisawa
,
T.
Yokoyama
,
T.
Sekiguchi
, and
T.
Negami
, “
Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85 °C/85% 1000 h stability
,”
Adv. Mater.
31
(
10
),
1806823
(
2019
).
4.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
, “
Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut
,”
Nano Lett.
15
(
6
),
3692
3696
(
2015
).
5.
A.
Swarnkar
,
R.
Chulliyil
,
V. K.
Ravi
,
M.
Irfanullah
,
A.
Chowdhury
, and
A.
Nag
, “
Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots
,”
Angew. Chem. Int. Ed.
54
(
51
),
15424
15428
(
2015
).
6.
A.
Swarnkar
,
A. R.
Marshall
,
E. M.
Sanehira
,
B. D.
Chernomordik
,
D. T.
Moore
,
J. A.
Christians
,
T.
Chakrabarti
, and
J. M.
Luther
, “
Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics
,”
Science
354
(
6308
),
92
95
(
2016
).
7.
L. P.
Cheng
,
J. S.
Huang
,
Y.
Shen
,
G. P.
Li
,
X. K.
Liu
,
W.
Li
,
Y. H.
Wang
,
Y. Q.
Li
,
Y.
Jiang
,
F.
Gao
,
C. S.
Lee
, and
J. X.
Tang
, “
Efficient CsPbBr3 perovskite light-emitting diodes enabled by synergetic morphology control
,”
Adv. Opt. Mater.
7
(
4
),
1801534
(
2019
).
8.
H. R.
Wang
,
X. Y.
Zhang
,
Q. Q.
Wu
,
F.
Cao
,
D. W.
Yang
,
Y. Q.
Shang
,
Z. J.
Ning
,
W.
Zhang
,
W. T.
Zheng
,
Y. F.
Yan
,
S. V.
Kershaw
,
L. J.
Zhang
,
A. L.
Rogach
, and
X. Y.
Yang
, “
Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices
,”
Nat. Commun.
10
,
665
(
2019
).
9.
J.
Shamsi
,
A. S.
Urban
,
M.
Imran
,
L.
De Trizio
, and
L.
Manna
, “
Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties
,”
Chem. Rev.
119
(
5
),
3296
3348
(
2019
).
10.
J. T.
DuBose
and
P. V.
Kamat
, “
Surface chemistry matters. How ligands influence excited state interactions between CsPbBr3 and methyl viologen
,”
J. Phys. Chem. C
124
(
24
),
12990
12998
(
2020
).
11.
A.
Kipkorir
,
J.
DuBose
,
J.
Cho
, and
P. V.
Kamat
, “
CsPbBr3–CdS heterostructure: Stabilizing perovskite nanocrystals for photocatalysis
,”
Chem. Sci.
12
(
44
),
14815
14825
(
2021
).
12.
J.
Shi
,
W.
Ge
,
J.
Zhu
,
M.
Saruyama
, and
T.
Teranishi
, “
Core-shell CsPbBr3@CdS quantum dots with enhanced stability and photoluminescence quantum yields for optoelectronic devices
,”
ACS Appl. Nano Mater.
3
(
8
),
7563
7571
(
2020
).
13.
N.
Zhang
,
K.
Xia
,
Q.
He
, and
J.
Pan
, “
Recent progress in the stability of red-emissive perovskite nanocrystals for light-emitting diodes
,”
ACS Mater. Lett.
4
(
6
),
1233
1254
(
2022
).
14.
C.
Otero-Martínez
,
N.
Fiuza-Maneiro
, and
L.
Polavarapu
, “
Enhancing the intrinsic and extrinsic stability of halide perovskite nanocrystals for efficient and durable optoelectronics
,”
ACS Appl. Mater. Interfaces
14
(
30
),
34291
34302
(
2022
).
15.
C.
de Weerd
,
L.
Gomez
,
H.
Zhang
,
W. J.
Buma
,
G.
Nedelcu
,
M. V.
Kovalenko
, and
T.
Gregorkiewicz
, “
Energy transfer between inorganic perovskite nanocrystals
,”
J. Phys. Chem. C
120
(
24
),
13310
13315
(
2016
).
16.
A.
Giampietri
,
G.
Drera
, and
L.
Sangaletti
, “
Band alignment at heteroepitaxial perovskite oxide interfaces. Experiments, methods, and perspectives
,”
Adv. Mater. Interfaces
4
(
11
),
1700144
(
2017
).
17.
S.
Akhil
,
V. G. V.
Dutt
,
R.
Singh
, and
N.
Mishra
, “
Surface-state-mediated interfacial hole transfer dynamics between CsPbBr3 perovskite nanocrystals and phenothiazine redox couple
,”
J. Phys. Chem. C
125
(
40
),
22133
22141
(
2021
).
18.
M.
Palabathuni
,
S.
Akhil
,
R.
Singh
, and
N.
Mishra
, “
Charge transfer in photoexcited cesium–lead halide perovskite nanocrystals: Review of materials and applications
,”
ACS Appl. Nano Mater.
5
,
10097
(
2022
).
19.
S.
Biswas
,
S.
Akhil
,
N.
Kumar
,
M.
Palabathuni
,
R.
Singh
,
V. G. V.
Dutt
, and
N.
Mishra
, “
Exploring the role of short chain acids as surface ligands in photoinduced charge transfer dynamics from CsPbBr3 perovskite nanocrystals
,”
J. Phys. Chem. Lett.
2023
,
1910
1917
(
2020
).
20.
J. T.
DuBose
and
P. V.
Kamat
, “
Efficacy of perovskite photocatalysis: Challenges to overcome
,”
ACS Energy Lett.
7
(
6
),
1994
2011
(
2022
).
21.
V. G. V.
Dutt
,
S.
Akhil
,
R.
Singh
,
M.
Palabathuni
, and
N.
Mishra
, “
Year-long stability and near-unity photoluminescence quantum yield of CsPbBr3 perovskite nanocrystals by benzoic acid post-treatment
,”
J. Phys. Chem. C
126
(
22
),
9502
9508
(
2022
).
22.
J.
De Roo
,
M.
Ibáñez
,
P.
Geiregat
,
G.
Nedelcu
,
W.
Walravens
,
J.
Maes
,
J. C.
Martins
,
I.
Van Driessche
,
M. V.
Kovalenko
, and
Z.
Hens
, “
Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals
,”
ACS Nano
10
(
2
),
2071
2081
(
2016
).
23.
J. T.
DuBose
,
A.
Christy
,
J.
Chakkamalayath
, and
P. V.
Kamat
, “
Transformation of perovskite nanoplatelets to large nanostructures driven by solvent polarity
,”
ACS Mater. Lett.
4
(
1
),
93
101
(
2022
).
24.
V. K.
Ravi
,
S.
Saikia
,
S.
Yadav
,
V. V.
Nawale
, and
A.
Nag
, “
CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability
,”
ACS Energy Lett.
5
(
6
),
1794
1796
(
2020
).
25.
X. S.
Tang
,
J.
Yang
,
S. Q.
Li
,
W. W.
Chen
,
Z. P.
Hu
, and
J.
Qiu
, “
CsPbBr3/CdS core/shell structure quantum dots for inverted light-emitting diodes application
,”
Front. Chem.
7
,
499
(
2019
).
26.
Q.
Zhong
,
M.
Cao
,
H.
Hu
,
D.
Yang
,
M.
Chen
,
P.
Li
,
L.
Wu
, and
Q.
Zhang
, “
One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles
,”
ACS Nano
12
(
8
),
8579
8587
(
2018
).
27.
E.
Fanizza
,
R.
Schingo
,
A.
Panniello
,
A. M.
Lanza
,
N.
Depalo
,
A.
Agostiano
,
M. L.
Curri
, and
M.
Striccoli
, “
CsPbBr3 nanocrystals-based polymer nanocomposite films: Effect of polymer on spectroscopic properties and moisture tolerance
,”
Energies
13
(
24
),
6730
(
2020
).
28.
X.
Jin
,
K.
Ma
,
J.
Chakkamalayath
,
J.
Morsby
, and
H.
Gao
, “
In situ photocatalyzed polymerization to stabilize perovskite nanocrystals in protic solvents
,”
ACS Energy Lett.
7
(
2
),
610
616
(
2022
).
29.
J.
Shen
,
Y.
Wang
,
Y.
Zhu
,
Y.
Gong
, and
C.
Li
, “
A polymer-coated template-confinement CsPbBr3 perovskite quantum dot composite
,”
Nanoscale
13
(
13
),
6586
6591
(
2021
).
30.
P.
Deng
,
W.
Wang
,
X.
Liu
,
L.
Wang
, and
Y.
Yan
, “
A hydrophobic polymer stabilized CsPbBr3 sensor for environmental pollutant detection
,”
New J. Chem.
45
(
2
),
930
938
(
2021
).
31.
Y.
Wu
,
P.
Wang
,
Z.
Guan
,
J.
Liu
,
Z.
Wang
,
Z.
Zheng
,
S.
Jin
,
Y.
Dai
,
M.-H.
Whangbo
, and
B.
Huang
, “
Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH3NH3PbBr3−xIx achieved by bandgap funneling of charge carriers
,”
Acs Catal.
8
(
11
),
10349
10357
(
2018
).
32.
J.
Wang
,
Y.
Shi
,
Y.
Wang
, and
Z.
Li
, “
Rational design of metal halide perovskite nanocrystals for photocatalytic CO2 reduction: Recent advances, challenges, and prospects
,”
ACS Energy Lett.
7
(
6
),
2043
2059
(
2022
).
33.
J. S.
Martin
,
X.
Zeng
,
X.
Chen
,
C.
Miller
,
C.
Han
,
Y.
Lin
,
N.
Yamamoto
,
X.
Wang
,
S.
Yazdi
,
Y.
Yan
,
M. C.
Beard
, and
Y.
Yan
, “
A nanocrystal catalyst incorporating a surface bound transition metal to induce photocatalytic sequential electron transfer events
,”
J. Am. Chem. Soc.
143
(
30
),
11361
11369
(
2021
).
34.
Y.
Yuan
,
H.
Zhu
,
K.
Hills‐Kimball
,
T.
Cai
,
W.
Shi
,
Z.
Wei
,
H.
Yang
,
Y.
Candler
,
P.
Wang
,
J.
He
, and
O.
Chen
, “
Stereoselective C–C oxidative coupling reactions photocatalyzed by zwitterionic ligand capped CsPbBr3 perovskite quantum dots
,”
Angew. Chem. Int. Edit.
59
(
50
),
22563
22569
(
2020
).
35.
A.
Shi
,
K.
Sun
,
X.
Chen
,
L.
Qu
,
Y.
Zhao
, and
B.
Yu
, “
Perovskite as recyclable photocatalyst for annulation reaction of N-sulfonyl ketimines
,”
Org. Lett.
24
(
1
),
299
303
(
2022
).
36.
T.
Watanabe
and
K.
Honda
, “
Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis
,”
J. Phys. Chem.
86
(
14
),
2617
2619
(
1982
).
37.
C. L.
Bird
and
A. T.
Kuhn
, “
Electrochemistry of the viologens
,”
Chem. Soc. Rev.
10
(
1
),
49
82
(
1981
).
38.
L.
Michaelis
and
E. S.
Hill
, “
The viologen indicators
,”
J. Gen. Physiol.
16
(
6
),
859
873
(
1933
).
39.
S.
Akhil
,
V. G. V.
Dutt
, and
N.
Mishra
, “
Surface modification for improving the photoredox activity of CsPbBr3 nanocrystals
,”
Nanoscale Adv
3
(
9
),
2547
2553
(
2021
).
40.
Y.
Zhu
,
Y.
Liu
,
K. A.
Miller
,
H.
Zhu
, and
E.
Egap
, “
Lead halide perovskite nanocrystals as photocatalysts for PET-RAFT polymerization under visible and near-infrared irradiation
,”
ACS Macro Lett.
9
(
5
),
725
730
(
2020
).
41.
H. Z.
Sun
,
Z. Y.
Yang
,
M. Y.
Wei
,
W.
Sun
,
X. Y.
Li
,
S. Y.
Ye
,
Y. B.
Zhao
,
H. R.
Tan
,
E. L.
Kynaston
,
T. B.
Schon
,
H.
Yan
,
Z. H.
Lu
,
G. A.
Ozin
,
E. H.
Sargent
, and
D. S.
Seferos
, “
Chemically addressable perovskite nanocrystals for light-emitting applications
,”
Adv. Mater.
29
(
34
),
1701153
(
2017
).
42.
Q.
Xie
,
D.
Wu
,
X.
Wang
,
Y.
Li
,
F.
Fang
,
Z.
Wang
,
Y.
Ma
,
M.
Su
,
S.
Peng
,
H.
Liu
,
K.
Wang
, and
X. W.
Sun
, “
Branched capping ligands improve the stability of cesium lead halide (CsPbBr3) perovskite quantum dots
,”
J. Mater. Chem. C
7
(
36
),
11251
11257
(
2019
).
43.
A. Q.
Zhao
,
Y. H.
Sheng
,
C. H.
Liu
,
S. Y.
Yuan
,
X. L.
Shan
,
Y. S.
Di
, and
Z. X.
Gan
, “
Fluorescent dynamics of CsPbBr3 nanocrystals in polar solvents: A potential sensor for polarity
,”
Nanotechnology
32
(
13
),
135701
(
2021
).
44.
X.
Luo
,
G.
Liang
,
J.
Wang
,
X.
Liu
, and
K.
Wu
, “
Picosecond multi-hole transfer and microsecond charge-separated states at the perovskite nanocrystal/tetracene interface
,”
Chem. Sci.
10
(
8
),
2459
2464
(
2019
).
45.
H.
Zhu
,
Y.
Yang
,
K.
Wu
, and
T.
Lian
, “
Charge transfer dynamics from photoexcited semiconductor quantum dots
,”
Annu. Rev. Phys. Chem.
67
,
259
281
(
2016
).
46.
S. M.
Kobosko
,
J. T.
DuBose
, and
P. V.
Kamat
, “
Perovskite photocatalysis. Methyl viologen induces unusually long-lived charge carrier separation in CsPbBr3 nanocrystals
,”
ACS Energy Lett.
5
(
1
),
221
223
(
2020
).
47.
S.
Krishnamurthy
,
I. V.
Lightcap
, and
P. V.
Kamat
, “
Electron transfer between methyl viologen radicals and graphene oxide: Reduction, electron storage and discharge
,”
J. Photoch. Photobio., A
221
(
2–3
),
214
219
(
2011
).
48.
A.
Lagatti
,
L.
Tarpani
,
E.
Fiacchi
,
L.
Bussotti
,
L.
Latterini
, and
P.
Foggi
, “
Charge transfer dynamics between MPA capped CdTe quantum dots and methyl viologen
,”
J. Photochem. Photobiol. A: Chem.
346
,
382
389
(
2017
).
49.
M. D.
Peterson
,
S. C.
Jensen
,
D. J.
Weinberg
, and
E. A.
Weiss
, “
Mechanisms for adsorption of methyl viologen on CdS quantum dots
,”
ACS Nano
8
(
3
),
2826
2837
(
2014
).
50.
L. J.
Ruan
,
B.
Tang
, and
Y.
Ma
, “
Improving the stability of CsPbBr3 nanocrystals in ethanol by capping with PbBr2-adlayers
,”
J. Phys. Chem. C
123
(
18
),
11959
11967
(
2019
).
51.
V.
Subramanian
,
E.
Wolf
, and
P. V.
Kamat
, “
Semiconductor–metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?
,”
J. Phys. Chem. A
105
(
46
),
11439
11446
(
2001
).
52.
J.
Chakkamalayath
,
G. V.
Hartland
, and
P. V.
Kamat
, “
Light induced processes in CsPbBr3–Au hybrid nanocrystals: Electron transfer and expulsion of Au
,”
J. Phys. Chem. C
125
(
32
),
17881
17889
(
2021
).
53.
A.
Kipkorir
and
P. V.
Kamat
, “
Managing photoinduced electron transfer in AgInS2–CdS heterostructures
,”
J. Chem. Phys.
156
(
17
),
174703
(
2022
).
54.
J.
Yun
,
H.
Fan
,
Y.
Zhang
,
R.
Huang
,
Y.
Ren
,
M.
Guo
,
H.
An
,
P.
Kang
, and
H.
Guo
, “
Enhanced optical absorption and interfacial carrier separation of CsPbBr3/graphene heterostructure: Experimental and theoretical insights
,”
ACS Appl. Mater. Interfaces
12
(
2
),
3086
3095
(
2020
).
55.
K.
Wu
,
H.
Zhu
,
Z.
Liu
,
W.
Rodríguez-Córdoba
, and
T.
Lian
, “
Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures
,”
J. Am. Chem. Soc.
134
(
25
),
10337
10340
(
2012
).
56.
K.
Wu
,
G.
Liang
,
Q.
Shang
,
Y.
Ren
,
D.
Kong
, and
T.
Lian
, “
Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots
,”
J. Am. Chem. Soc.
137
(
40
),
12792
12795
(
2015
).
57.
V. I.
Klimov
, “
Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals
,”
J. Phys. Chem. A
104
(
26
),
6112
6123
(
2000
).
58.
A.
Boulesbaa
,
A.
Issac
,
D.
Stockwell
,
Z.
Huang
,
J.
Huang
,
J.
Guo
, and
T.
Lian
, “
Ultrafast charge separation at CdS quantum dot/rhodamine B molecule interface
,”
J. Am. Chem. Soc.
129
(
49
),
15132
15133
(
2007
).
59.
J.
Huang
,
Z.
Huang
,
S.
Jin
, and
T.
Lian
, “
Exciton dissociation in CdSe quantum dots by hole transfer to phenothiazine
,”
J. Phys. Chem. C
112
(
49
),
19734
19738
(
2008
).
60.
N.
Song
,
H.
Zhu
,
S.
Jin
,
W.
Zhan
, and
T.
Lian
, “
Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules
,”
ACS Nano
5
(
1
),
613
621
(
2011
).
61.
C.
Harris
and
P. V.
Kamat
, “
Photocatalysis with CdSe nanoparticles in confined media: Mapping charge transfer events in the subpicosecond to second timescales
,”
ACS Nano
3
(
3
),
682
690
(
2009
).
62.
F.
Zhao
,
Q.
Li
,
K.
Han
, and
T.
Lian
, “
Mechanism of efficient viologen radical generation by ultrafast electron transfer from CdS quantum dots
,”
J. Phys. Chem. C
122
(
30
),
17136
17142
(
2018
).
63.
F.
Costantino
,
L.
Gavioli
, and
P. V.
Kamat
,
A bipolar CdS/Pd photocatalytic membrane for selective segregation of reduction and oxidation processes
.
ACS Phys. Chem. Au
2
(
2
),
89
97
(
2022
).

Supplementary Material

You do not currently have access to this content.