The complexity of electrochemical interfaces has led to the development of several approximate density functional theory (DFT)-based schemes to study reaction thermodynamics and kinetics as a function of electrode potential. While fixed electrode potential conditions can be simulated with grand canonical ensemble DFT (GCE-DFT), various electrostatic corrections on canonical, constant charge DFT are often applied instead. In this work, we present a systematic derivation and analysis of the different electrostatic corrections on canonical DFT to understand their physical validity, implicit assumptions, and scope of applicability. Our work highlights the need to carefully address the suitability of a given model for the problem under study, especially if physical or chemical insight in addition to reaction energetics is sought. In particular, we analytically show that the different corrections cannot differentiate between electrostatic interactions and covalent or charge-transfer interactions. By numerically testing different models for CO2 adsorption on a single-atom catalyst as a function of the electrode potential, we further show that computed capacitances, dipole moments, and the obtained physical insight depend sensitively on the chosen approximation. These features limit the scope, generality, and physical insight of these corrective schemes despite their proven practicality for specific systems and energetics. Finally, we suggest guidelines for choosing different electrostatic corrections and propose the use of conceptual DFT to develop more general approximations for electrochemical interfaces and reactions using canonical DFT.

1.
Atomic-Scale Modelling of Electrochemical Systems
, edited by
M. M.
Melander
,
T. T. L.
Laurila
, and
K.
Laasonen
(
John Wiley & Sons Ltd.
,
Chichester
,
2022
).
2.
A. Y.
Lozovoi
,
A.
Alavi
,
J.
Kohanoff
, and
R. M.
Lynden-Bell
, “
Ab initio simulation of charged slabs at constant chemical potential
,”
J. Chem. Phys.
115
,
1661
1669
(
2001
).
3.
N. D.
Mermin
, “
Thermal properties of the inhomogeneous electron gas
,”
Phys. Rev.
137
,
A1441
A1443
(
1965
).
4.
R.
Sundararaman
,
W. A.
Goddard
, and
T. A.
Arias
, “
Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry
,”
J. Chem. Phys.
146
,
114104
(
2017
).
5.
M. M.
Melander
,
M. J.
Kuisma
,
T. E. K.
Christensen
, and
K.
Honkala
, “
Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials
,”
J. Chem. Phys.
150
,
041706
(
2019
).
6.
M. M.
Melander
, “
Grand canonical rate theory for electrochemical and electrocatalytic systems I: General formulation and proton-coupled electron transfer reactions
,”
J. Electrochem. Soc.
167
,
116518
(
2020
).
7.
N.
Bonnet
,
T.
Morishita
,
O.
Sugino
, and
M.
Otani
, “
First-principles molecular dynamics at a constant electrode potential
,”
Phys. Rev. Lett.
109
,
266101
(
2012
).
8.
W.
Schmickler
and
E.
Santos
, “
Desorption of hydrogen from graphene induced by charge injection
,”
ChemElectroChem
9
,
e202200511
(
2022
).
9.
M. M.
Melander
, “
Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians
,”
Curr. Opin. Electrochem.
29
,
100749
(
2021
).
10.
N.
Abidi
and
S. N.
Steinmann
, “
How are transition states modeled in heterogeneous electrocatalysis?,
Curr. Opin. Electrochem.
33
,
100940
(
2022
).
11.
S.
Vijay
,
W.
Ju
,
S.
Brückner
,
S.-C.
Tsang
,
P.
Strasser
, and
K.
Chan
, “
Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts
,”
Nat. Catal.
4
,
1024
1031
(
2021
).
12.
S.
Vijay
,
G.
Kastlunger
,
J. A.
Gauthier
,
A.
Patel
, and
K.
Chan
, “
Force-based method to determine the potential dependence in electrochemical barriers
,”
J. Phys. Chem. Lett.
13
,
5719
5725
(
2022
).
13.
A. M.
Patel
,
S.
Vijay
,
G.
Kastlunger
,
J. K.
Nørskov
, and
K.
Chan
, “
Generalizable trends in electrochemical protonation barriers
,”
J. Phys. Chem. Lett.
12
,
5193
5200
(
2021
).
14.
S.
Vijay
,
J. A.
Gauthier
,
H. H.
Heenen
,
V. J.
Bukas
,
H. H.
Kristoffersen
, and
K.
Chan
, “
Dipole-field interactions determine the CO2 reduction activity of 2D Fe–N–C single-atom catalysts
,”
ACS Catal.
10
,
7826
7835
(
2020
).
15.
S. R.
Kelly
,
C.
Kirk
,
K.
Chan
, and
J. K.
Nørskov
, “
Electric field effects in oxygen reduction kinetics: Rationalizing pH dependence at the Pt(111), Au(111), and Au(100) electrodes
,”
J. Phys. Chem. C
124
,
14581
14591
(
2020
).
16.
S.
Ringe
,
C. G.
Morales-Guio
,
L. D.
Chen
,
M.
Fields
,
T. F.
Jaramillo
,
C.
Hahn
, and
K.
Chan
, “
Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold
,”
Nat. Commun.
11
,
33
(
2020
).
17.
J. A.
Gauthier
,
C. F.
Dickens
,
H. H.
Heenen
,
S.
Vijay
,
S.
Ringe
, and
K.
Chan
, “
Unified approach to implicit and explicit solvent simulations of electrochemical reaction energetics
,”
J. Chem. Theory Comput.
15
,
6895
6906
(
2019
).
18.
S.
Ringe
,
E. L.
Clark
,
J.
Resasco
,
A.
Walton
,
B.
Seger
,
A. T.
Bell
, and
K.
Chan
, “
Understanding cation effects in electrochemical CO2 reduction
,”
Energy Environ. Sci.
12
,
3001
3014
(
2019
).
19.
L. D.
Chen
,
M.
Urushihara
,
K.
Chan
, and
J. K.
Nørskov
, “
Electric field effects in electrochemical CO2 reduction
,”
ACS Catal.
6
,
7133
7139
(
2016
).
20.
K.
Chan
and
J. K.
Nørskov
, “
Potential dependence of electrochemical barriers from ab initio calculations
,”
J. Phys. Chem. Lett.
7
,
1686
1690
(
2016
).
21.
K.
Chan
and
J. K.
Nørskov
, “
Electrochemical barriers made simple
,”
J. Phys. Chem. Lett.
6
,
2663
2668
(
2015
).
22.
J. A.
Gauthier
,
C. F.
Dickens
,
S.
Ringe
, and
K.
Chan
, “
Practical considerations for continuum models applied to surface electrochemistry
,”
ChemPhysChem
20
,
3074
3080
(
2019
).
23.
S.
Ringe
, “
The importance of a charge transfer descriptor for the screening of electrocatalysts at the example of CO2 reduction,
ChemRxiv:10.26434/chemrxiv-2022-hvf9g (
2022
).
24.
S. D.
Beinlich
,
N. G.
Hörmann
, and
K.
Reuter
, “
Field effects at protruding defect sites in electrocatalysis at metal electrodes?,
ACS Catal.
12
,
6143
6148
(
2022
).
25.
N. G.
Hörmann
,
N.
Marzari
, and
K.
Reuter
, “
Electrosorption at metal surfaces from first principles
,”
Comput. Mater.
6
,
136
(
2020
).
26.
G. A.
Tsirlina
,
O. A.
Petrii
,
R. R.
Nazmutdinov
, and
D. V.
Glukhov
, “
Frumkin correction: Microscopic view
,”
Russ. J. Electrochem.
38
,
132
140
(
2002
).
27.
S.
Trasatti
, “
The “absolute” electrode potential—The end of the story
,”
Electrochim. Acta
35
,
269
271
(
1990
).
28.
P.
Geerlings
,
F.
De Proft
, and
W.
Langenaeker
, “
Conceptual density functional theory
,”
Chem. Rev.
103
,
1793
1874
(
2003
).
29.
M.
Franco-Pérez
,
P. W.
Ayers
,
J. L.
Gázquez
, and
A.
Vela
, “
Thermodynamic responses of electronic systems
,”
J. Chem. Phys.
147
,
094105
(
2017
).
30.
T.
Binninger
, “
Piecewise nonlinearity and capacitance in the joint density functional theory of extended interfaces
,”
Phys. Rev. B
103
,
L161403
(
2021
).
31.
M.
Melander
,
T.
Wu
, and
K.
Honkala
, “
Constant inner potential DFT for modelling electrochemical systems under constant potential and bias
,” ChemRxiv:10.26434/chemrxiv-2021-r621x-v3 (
2023
).
32.
C. G.
Van de Walle
and
R. M.
Martin
, “
Theoretical calculations of heterojunction discontinuities in the Si/Ge system
,”
Phys. Rev. B
34
,
5621
5634
(
1986
).
33.
J. K.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
,
L.
Lindqvist
,
J. R.
Kitchin
,
T.
Bligaard
, and
H.
Jónsson
, “
Origin of the overpotential for Oxygen reduction at a fuel-cell cathode
,”
J. Phys. Chem. B
108
,
17886
17892
(
2004
).
34.
D.
Bruch
,
C.
Balzer
, and
Z.-G.
Wang
, “
Thermodynamics of electrolyte solutions near charged surfaces: Constant surface charge vs constant surface potential
,”
J. Chem. Phys.
156
,
174704
(
2022
).
35.
D.
Gunceler
,
K.
Letchworth-Weaver
,
R.
Sundararaman
,
K. A.
Schwarz
, and
T. A.
Arias
, “
The importance of nonlinear fluid response in joint density-functional theory studies of battery systems
,”
Modell. Simul. Mater. Sci. Eng.
21
,
074005
(
2013
).
36.
J.
Wu
, “
Understanding the electric double-layer structure, capacitance, and charging dynamics
,”
Chem. Rev.
122
,
10821
10859
(
2022
).
37.
J.
Huang
, “
Surface charging behaviors of electrocatalytic interfaces with partially charged chemisorbates
,”
Curr. Opin. Electrochem.
33
,
100938
(
2022
).
38.
P.
Hutchison
,
R. E.
Warburton
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
, “
Multicapacitor approach to interfacial proton-coupled electron transfer thermodynamics at constant potential
,”
J. Phys. Chem. C
125
,
21891
21901
(
2021
).
39.
O.
Gharbi
,
M. T. T.
Tran
,
B.
Tribollet
,
M.
Turmine
, and
V.
Vivier
, “
Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements
,”
Electrochim. Acta
343
,
136109
(
2020
).
40.
J.
Kang
,
J.
Wen
,
S. H.
Jayaram
,
A.
Yu
, and
X.
Wang
, “
Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes
,”
Electrochim. Acta
115
,
587
598
(
2014
).
41.
J.
Huang
and
C.-K.
Li
, “
Impedance response of electrochemical interfaces: Part II-chemisorption
,”
J. Phys.: Condens. Matter
33
,
164003
(
2021
).
42.
N.
Karmodak
,
S.
Vijay
,
G.
Kastlunger
, and
K.
Chan
, “
Computational screening of single and di-atom catalysts for electrochemical CO2 reduction
,”
ACS Catal.
12
,
4818
4824
(
2022
).
43.
A.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
2013
).
44.
W.
Schmickler
, “
The surface dipole moment of species adsorbed from a solution
,”
J. Electroanal. Chem. Interfacial Electrochem.
249
,
25
33
(
1988
).
45.

Under electrochemical conditions or in GCE-DFT this practice would be inapplicable because the work function does not change because it is fixed by the electrode potential.

46.
D.
Luan
and
J.
Xiao
, “
Adaptive electric fields embedded electrochemical barrier calculations
,”
J. Phys. Chem. Lett.
14
,
685
693
(
2023
).
47.
L.
Komorowski
,
J.
Lipiński
, and
P.
Szarek
, “
Polarization justified Fukui functions
,”
J. Chem. Phys.
131
,
124120
(
2009
).
48.
T.
Clarys
,
T.
Stuyver
,
F.
De Proft
, and
P.
Geerlings
, “
Extending conceptual DFT to include additional variables: Oriented external electric field
,”
Phys. Chem. Chem. Phys.
23
,
990
1005
(
2021
).
49.
W. R.
Fawcett
, “
Fifty years of studies of double layer effects in electrode kinetics—A personal view
,”
J. Solid State Electrochem.
15
,
1347
(
2011
).
50.
D.-Q.
Liu
,
M.
Kang
,
D.
Perry
,
C.-H.
Chen
,
G.
West
,
X.
Xia
,
S.
Chaudhuri
,
Z. P. L.
Laker
,
N. R.
Wilson
,
G. N.
Meloni
,
M. M.
Melander
,
R. J.
Maurer
, and
P. R.
Unwin
, “
Adiabatic versus non-adiabatic electron transfer at 2D electrode materials
,”
Nat. Commun.
12
,
7110
(
2021
).
51.
W.
Schmickler
, “
A theory of adiabatic electron-transfer reactions
,”
J. Electroanal. Chem. Interfacial Electrochem.
204
,
31
43
(
1986
).
52.
J.
Huang
,
P.
Li
, and
S.
Chen
, “
Quantitative understanding of the sluggish kinetics of hydrogen reactions in alkaline media based on a microscopic Hamiltonian model for the Volmer step
,”
J. Phys. Chem. C
123
,
17325
17334
(
2019
).
53.
C. G.
Vayenas
and
S.
Brosda
, “
Electron donation–backdonation and the rules of catalytic promotion
,”
Top. Catal.
57
,
1287
1301
(
2014
).
54.
R. A.
Miranda-Quintana
,
P. W.
Ayers
, and
F.
Heidar-Zadeh
, “
Reactivity and charge transfer beyond the parabolic model: The “|Δμ| big is good” principle
,”
ChemistrySelect
6
,
96
100
(
2021
).
55.
R. A.
Miranda-Quintana
and
J.
Smiatek
, “
Theoretical insights into specific ion effects and strong-weak acid-base rules for ions in solution: Deriving the law of matching solvent affinities from first principles
,”
ChemPhysChem
21
,
2605
2617
(
2020
).
56.
R. A.
Miranda-Quintana
,
M.
Martínez González
, and
P. W.
Ayers
, “
Electronegativity and redox reactions
,”
Phys. Chem. Chem. Phys.
18
,
22235
22243
(
2016
).
57.
The potential-of-zero-charge effects are implicitly included in the reference state chosen for Eq. (37).
58.
T.
Clark
, “
Polarization, donor–acceptor interactions, and covalent contributions in weak interactions: A clarification
,”
J. Mol. Model.
23
,
297
(
2017
).
59.
J.
Chen
,
C.
Li
, and
G.
Shi
, “
Graphene materials for electrochemical capacitors
,”
J. Phys. Chem. Lett.
4
,
1244
1253
(
2013
).
60.
F.
Dominguez-Flores
,
E.
Santos
,
W.
Schmickler
, and
F.
Juarez
, “
Interaction between chloride ions mediated by carbon nanotubes: A chemical attraction
,”
J. Solid State Electrochem.
24
,
3207
(
2020
).
61.

While some approximations, such as dielectric continuum solvent/electrolyte models, need to be used currently in practical GCE-DFT calculations, it should be noted that canonical DFT inherits all limitations of current GCE-DFT methods but many more are introduced when using canonical DFT and electrostatic corrections.

62.
E.
Skúlason
,
V.
Tripkovic
,
M. E.
Björketun
,
S.
Gudmundsdóttir
,
G.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
H.
Jónsson
, and
J. K.
Nørskov
, “
Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations
,”
J. Phys. Chem. C
114
,
18182
18197
(
2010
).
63.
J.
Rossmeisl
,
E.
Skúlason
,
M. E.
Björketun
,
V.
Tripkovic
, and
J. K.
Nørskov
, “
Modeling the electrified solid–liquid interface
,”
Chem. Phys. Lett.
466
,
68
71
(
2008
).
64.
M. D.
Hossain
,
Y.
Huang
,
T. H.
Yu
,
W. A.
Goddard
III
, and
Z.
Luo
, “
Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics
,”
Nat. Commun.
11
,
2256
(
2020
).
65.
P.
Besalú-Sala
,
M.
Solà
,
J. M.
Luis
, and
M.
Torrent-Sucarrat
, “
Fast and simple evaluation of the catalysis and selectivity induced by external electric fields
,”
ACS Catal.
11
,
14467
14479
(
2021
).
66.
N. M.
Hoffmann
,
X.
Wang
, and
T. C.
Berkelbach
, “
Linear free energy relationships in electrostatic catalysis
,”
ACS Catal.
12
,
8237
8241
(
2022
).
67.
J.-S.
Filhol
and
M.-L.
Doublet
, “
Conceptual surface electrochemistry and new redox descriptors
,”
J. Phys. Chem. C
118
,
19023
19031
(
2014
).
68.
T.
Wu
,
M. M.
Melander
, and
K.
Honkala
, “
Coadsorption of NRR and HER intermediates determines the performance of Ru-N4 toward electrocatalytic N2 reduction
,”
ACS Catal.
12
,
2505
2512
(
2022
).
69.
G.
Kastlunger
,
P.
Lindgren
, and
A. A.
Peterson
, “
Controlled-potential simulation of elementary electrochemical reactions: Proton discharge on metal surfaces
,”
J. Phys. Chem. C
122
,
12771
12781
(
2018
).
70.
J.
Enkovaara
,
C.
Rostgaard
,
J. J.
Mortensen
,
J.
Chen
,
M.
Dułak
,
L.
Ferrighi
,
J.
Gavnholt
,
C.
Glinsvad
,
V.
Haikola
,
H. A.
Hansen
,
H. H.
Kristoffersen
,
M.
Kuisma
,
A. H.
Larsen
,
L.
Lehtovaara
,
M.
Ljungberg
,
O.
Lopez-Acevedo
,
P. G.
Moses
,
J.
Ojanen
,
T.
Olsen
,
V.
Petzold
,
N. A.
Romero
,
J.
Stausholm-Møller
,
M.
Strange
,
G. A.
Tritsaris
,
M.
Vanin
,
M.
Walter
,
B.
Hammer
,
H.
Häkkinen
,
G. K. H.
Madsen
,
R. M.
Nieminen
,
J. K.
Nørskov
,
M.
Puska
,
T. T.
Rantala
,
J.
Schiøtz
,
K. S.
Thygesen
, and
K. W.
Jacobsen
, “
Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method
,”
J. Phys.: Condens. Matter
22
,
253202
(
2010
).
71.
A.
Held
and
M.
Walter
, “
Simplified continuum solvent model with a smooth cavity based on volumetric data
,”
J. Chem. Phys.
141
,
174108
(
2014
).
72.
J.
Wellendorff
,
K. T.
Lundgaard
,
A.
Møgelhøj
,
V.
Petzold
,
D. D.
Landis
,
J. K.
Nørskov
,
T.
Bligaard
, and
K. W.
Jacobsen
, “
Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation
,”
Phys. Rev. B
85
,
235149
(
2012
).
73.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
, “
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
,”
Comput. Phys. Commun.
181
,
1477
1489
(
2010
).
74.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
75.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
76.
J. C.
Zapata
and
L. K.
McKemmish
, “
Computation of dipole moments: A recommendation on the choice of the basis set and the level of theory
,”
J. Phys. Chem. A
124
,
7538
7548
(
2020
).

Supplementary Material

You do not currently have access to this content.