A vast array of phenomena, ranging from chemical reactions to phase transformations, are analyzed in terms of a free energy surface defined with respect to a single or multiple order parameters. Enhanced sampling methods are typically used, especially in the presence of large free energy barriers, to estimate free energies using biasing protocols and sampling of transition paths. Kinetic reconstructions of free energy barriers of intermediate height have been performed, with respect to a single order parameter, employing the steady state properties of unconstrained simulation trajectories when barrier crossing is achievable with reasonable computational effort. Considering such cases, we describe a method to estimate free energy surfaces with respect to multiple order parameters from a steady state ensemble of trajectories. The approach applies to cases where the transition rates between pairs of order parameter values considered is not affected by the presence of an absorbing boundary, whereas the macroscopic fluxes and sampling probabilities are. We demonstrate the applicability of our prescription on different test cases of random walkers executing Brownian motion in order parameter space with an underlying (free) energy landscape and discuss strategies to improve numerical estimates of the fluxes and sampling. We next use this approach to reconstruct the free energy surface for supercooled liquid silicon with respect to the degree of crystallinity and density, from unconstrained molecular dynamics simulations, and obtain results quantitatively consistent with earlier results from umbrella sampling.

1.
H. E.
Stanley
,
Liquid Polymorphism
(
Wiley Online Library
,
2013
), Vol. 152.
2.
J. C.
Palmer
et al,
Nature
510
,
385
(
2014
).
3.
P. G.
Debenedetti
,
F.
Sciortino
, and
G. H.
Zerze
,
Science
369
,
289
(
2020
).
4.
R.
Chen
,
E.
Lascaris
, and
J. C.
Palmer
,
J. Chem. Phys.
146
,
234503
(
2017
).
5.
V. V.
Vasisht
and
S.
Sastry
,
Adv. Chem. Phys.
152
,
463
(
2013
); arXiv:2108.13713.
6.
Y.
Goswami
and
S.
Sastry
,
PNAS Nexus
1
,
pgac204
(
2022
).
7.
F.
Smallenburg
,
L.
Filion
, and
F.
Sciortino
,
Nat. Phys.
10
,
653
(
2014
).
8.
F.
Ricci
and
P. G.
Debenedetti
,
J. Chem. Sci.
129
,
801
(
2017
).
9.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
10.
C. H.
Bennett
, “
Molecular dynamics and transition state theory: The simulation of infrequent events
,” in
Algorithms for Chemical Computations
, ACS Symposium Series Vol. 46 (
American Chemical Society
, 1977), Chap. 4, pp.
63
97
.
11.
T. S.
Van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
12.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
124
,
024102
(
2006
).
13.
O.
Valsson
,
P.
Tiwary
, and
M.
Parrinello
,
Annu. Rev. Phys. Chem.
67
,
159
(
2016
).
14.
B.
Peters
,
P. G.
Bolhuis
,
R. G.
Mullen
, and
J.-E.
Shea
,
J. Chem. Phys.
138
,
054106
(
2013
).
15.
16.
J.
Wedekind
,
R.
Strey
, and
D.
Reguera
,
J. Chem. Phys.
126
,
134103
(
2007
).
17.
J.
Wedekind
and
D.
Reguera
,
J. Phys. Chem. B
112
,
11060
(
2008
).
18.
J.
Wedekind
,
G.
Chkonia
,
J.
Wölk
,
R.
Strey
, and
D.
Reguera
,
J. Chem. Phys.
131
,
114506
(
2009
).
19.
S. E. M.
Lundrigan
and
I.
Saika-Voivod
,
J. Chem. Phys.
131
,
104503
(
2009
).
20.
V.
Thapar
and
F. A.
Escobedo
,
J. Chem. Phys.
143
,
244113
(
2015
).
21.
Y.
Goswami
,
V. V.
Vasisht
,
D.
Frenkel
,
P. G.
Debenedetti
, and
S.
Sastry
,
J. Chem. Phys.
155
,
194502
(
2021
).
22.
G. E.
Crooks
,
J. Stat. Phys.
90
,
1481
(
1998
).
23.
S. K.
Banik
,
J. R.
Chaudhuri
, and
D. S.
Ray
,
J. Chem. Phys.
112
,
8330
(
2000
).
24.
G.
Hummer
and
A.
Szabo
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
3658
(
2001
).
25.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature
360
,
324
(
1992
).
26.
R. S.
DeFever
and
S.
Sarupria
,
J. Chem. Phys.
150
,
024103
(
2019
).
27.
R.
Verma
and
N. N.
Nair
,
J. Phys. Chem. C
126
,
19169
(
2022
).
28.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
29.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
30.
T. S.
Van Erp
and
P. G.
Bolhuis
,
J. Comput. Phys.
205
,
157
(
2005
).
31.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
32.
S.
Sastry
and
C.
Austen Angell
,
Nat. Mater.
2
,
739
(
2003
).
33.
P.
Ganesh
and
M.
Widom
,
Phys. Rev. Lett.
102
,
075701
(
2009
).
34.
M.
Beye
,
F.
Sorgenfrei
,
W. F.
Schlotter
,
W.
Wurth
, and
A.
Föhlisch
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
16772
(
2010
).
35.
V. V.
Vasisht
,
S.
Saw
, and
S.
Sastry
,
Nat. Phys.
7
,
549
(
2011
).
36.
A.
Neophytou
,
D.
Chakrabarti
, and
F.
Sciortino
,
Nat. Phys.
18
,
1248
(
2022
).
37.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
38.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
,
J. Chem. Phys.
134
,
174502
(
2011
).
39.
J.
Wedekind
et al,
Sci. Rep.
5
,
11260
(
2015
).
40.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
41.
R. J.
Allen
,
C.
Valeriani
, and
P.
Rein ten Wolde
,
J. Phys.: Condens. Matter
21
,
463102
(
2009
).
42.
W.
E
and
E.
Vanden-Eijnden
,
Annu. Rev. Phys. Chem.
61
,
391
(
2010
).
43.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol. 1.
44.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
), Vol. 1.
45.
R.
Müller
,
P.
Talkner
, and
P.
Reimann
,
Physica A
247
,
338
(
1997
).
46.
F.
Huang
and
H.
Chen
,
Phys. Rev. E
103
,
062132
(
2021
).
47.
L.
Qin
,
C.
Dellago
, and
E.
Kozeschnik
,
J. Chem. Phys.
150
,
094114
(
2019
).
48.
C.
Valeriani
,
R. J.
Allen
,
M. J.
Morelli
,
D.
Frenkel
, and
P.
Rein ten Wolde
,
J. Chem. Phys.
127
,
114109
(
2007
).
49.
B.
Kuznets-Speck
and
D. T.
Limmer
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2020863118
(
2021
).
50.
M. R.
Evans
,
S. N.
Majumdar
, and
G.
Schehr
,
J. Phys. A: Math. Theor.
53
,
193001
(
2020
).
51.
H.
Chen
,
G.
Li
, and
F.
Huang
,
J. Phys. A: Math. Theor.
55
,
384005
(
2022
).
52.
A.
Pal
,
S.
Pal
,
S.
Verma
,
M.
Shiga
, and
N. N.
Nair
,
J. Comput. Chem.
42
,
1996
(
2021
).
53.
S.
Awasthi
,
V.
Kapil
, and
N. N.
Nair
,
J. Comput. Chem.
37
,
1413
(
2016
).
54.
S.
Awasthi
and
N. N.
Nair
,
J. Chem. Phys.
146
,
094108
(
2017
).
55.
A.
Haji-Akbari
,
J. Chem. Phys.
149
,
072303
(
2018
).
56.
P.
Das
,
A. D. S.
Parmar
, and
S.
Sastry
,
J. Chem. Phys.
157
,
044501
(
2022
).
You do not currently have access to this content.