Measurements of the 0–0 hyperfine resonant frequencies of ground-state 85Rb atoms show a nonlinear dependence on the pressure of the buffer gases Ar, Kr, and Xe. The nonlinearities are similar to those previously observed with 87Rb and 133Cs and presumed to come from alkali-metal–noble-gas van der Waals molecules. However, the shape of the nonlinearity observed for Xe conflicts with previous theory, and the nonlinearities for Ar and Kr disagree with the expected isotopic scaling of previous 87Rb results. Improving the modeling alleviates most of these discrepancies by treating rotation quantum mechanically and considering additional spin interactions in the molecules. Including the dipolar-hyperfine interaction allows simultaneous fitting of the linear and nonlinear shifts of both 85Rb and 87Rb in either Ar, Kr, or Xe buffer gases with a minimal set of shared, isotope-independent parameters. To the limit of experimental accuracy, the shifts in He and N2 were linear with pressure. The results are of practical interest to vapor-cell atomic clocks and related devices.

1.
J.
Kłos
and
E.
Tiesinga
, “
Elastic and glancing-angle rate coefficients for heating of ultracold Li and Rb atoms by collisions with room-temperature noble gases, H2, and N2
,”
J. Chem. Phys.
158
,
014308
(
2023
).
2.
J.
Loreau
,
P.
Zhang
, and
A.
Dalgarno
, “
Elastic scattering and rotational excitation of nitrogen molecules by sodium atoms
,”
J. Chem. Phys.
135
,
174301
(
2011
).
3.
J.
Vanier
and
C.
Audoin
,
The Quantum Physics of Atomic Frequency Standards
(
A. Hilger
,
Bristol
,
1989
).
4.
J.
Camparo
, “
The rubidium atomic clock and basic research
,”
Phys. Today
60
(
11
),
33
39
(
2007
).
5.
J.
Kitching
, “
Chip-scale atomic devices
,”
Appl. Phys. Rev.
5
,
031302
(
2018
).
6.
W. J.
Riley
,
Rubidium Frequency Standard Primer
(
Hamilton Technical Services
,
Beaufort, SC
,
2011
), see https://www.wriley.com/Rubidium%20Frequency%20Standard%20Primer%20102211.pdf.
7.
K.
Ishikawa
, “
Pseudopotential analysis on hyperfine splitting frequency shift of alkali-metal atoms in noble gases, revisited
,”
J. Chem. Phys.
158
,
084306
(
2023
).
8.
K.
Ishikawa
, “
Noble-gas atoms characterized by hyperfine frequency shift of lithium atom
,”
J. Chem. Phys.
156
,
144301
(
2022
).
9.
J. C.
Camparo
, “
Semiempirical theory of carver rates in alkali/noble-gas systems
,”
J. Chem. Phys.
126
,
244310
(
2007
).
10.
P. J.
Oreto
,
Y.-Y.
Jau
,
A. B.
Post
,
N. N.
Kuzma
, and
W.
Happer
, “
Buffer-gas induced shift and broadening of hyperfine resonances in alkali-metal vapors
,”
Phys. Rev. A
69
,
042716
(
2004
).
11.
L.-C.
Ha
,
X.
Zhang
,
N.
Dao
, and
K. R.
Overstreet
, “
D1 line broadening and hyperfine frequency shift coefficients for 87Rb and 133Cs in Ne, Ar, and N2
,”
Phys. Rev. A
103
,
022826
(
2021
).
12.
A. A.
Medvedev
,
V. V.
Meshkov
,
A. V.
Stolyarov
, and
M. C.
Heaven
, “
Ab initio interatomic potentials and transport properties of alkali metal (M = Rb and Cs)–rare gas (Rg = He, Ne, Ar, Kr, and Xe) media
,”
Phys. Chem. Chem. Phys.
20
,
25974
25982
(
2018
).
13.
S. H.
Patil
, “
Adiabatic potentials for alkali inert-gas systems in the ground-state
,”
J. Chem. Phys.
94
,
8089
8095
(
1991
).
14.
J.
Pascale
and
J.
Vandeplanque
, “
Excited molecular terms of the alkali-rare gas atom pairs
,”
J. Chem. Phys.
60
,
2278
2289
(
1974
).
15.
U.
Buck
and
H.
Pauly
, “
Interferenzen bei atomaren stoßprozessen und ihre interpretation durch ein modifiziertes Lennard-Jones-potential
,”
Z. Physik
208
,
390
417
(
1968
).
16.
N.
Tariq
,
N. A.
Taisan
,
V.
Singh
, and
J. D.
Weinstein
, “
Spectroscopic detection of the LiHe molecule
,”
Phys. Rev. Lett.
110
,
153201
(
2013
).
17.
N.
Brahms
,
T. V.
Tscherbul
,
P.
Zhang
,
J.
Kłos
,
H. R.
Sadeghpour
,
A.
Dalgarno
,
J. M.
Doyle
, and
T. G.
Walker
, “
Formation of van der Waals molecules in buffer-gas-cooled magnetic traps
,”
Phys. Rev. Lett.
105
,
033001
(
2010
).
18.
J.
Dhiflaoui
,
H.
Berriche
, and
M. C.
Heaven
, “
Electronic absorption spectra of the RbAr van der Waals complex
,”
AIP Conf. Proc.
1370
,
234
241
(
2011
).
19.
I. S. K.
Kerkines
and
A.
Mavridis
, “
Theoretical investigation of the X 2Σ+, A 2Π, and B 2Σ+ states of LiAr and LiKr
,”
J. Chem. Phys.
116
,
9305
9314
(
2002
).
20.
H.
Partridge
,
J. R.
Stallcop
, and
E.
Levin
, “
Potential energy curves and transport properties for the interaction of He with other ground-state atoms
,”
J. Chem. Phys.
115
,
6471
6488
(
2001
).
21.
P.
Dehmer
and
L.
Wharton
, “
Absolute total scattering cross sections for 7Li on He, Ne, Kr, and Xe
,”
J. Chem. Phys.
57
,
4821
4835
(
1972
).
22.
G. B.
Ury
and
L.
Wharton
, “
Absolute total scattering cross sections of 7Li–Ar
,”
J. Chem. Phys.
56
,
5832
5837
(
1972
).
23.
W.
Happer
, “
Optical pumping
,”
Rev. Mod. Phys.
44
,
169
249
(
1972
).
24.
M. A.
Bouchiat
,
J.
Brossel
, and
L. C.
Pottier
, “
Evidence for Rb-rare-gas molecules from the relaxation of polarized Rb atoms in a rare gas. Experimental results
,”
J. Chem. Phys.
56
,
3703
3714
(
1972
).
25.
M. A.
Bouchiat
,
J.
Brossel
,
P.
Mora
, and
L.
Pottier
, “
Properties of rubidium-argon van der Waals molecules from the relaxation of polarized Rb atoms
,”
J. Phys.
36
,
1075
1077
(
1975
).
26.
M.
Mirahmadi
and
J.
Pérez-Ríos
, “
On the formation of van der Waals complexes through three-body recombination
,”
J. Chem. Phys.
154
,
034305
(
2021
).
27.
M.
Mirahmadi
and
J.
Pérez-Ríos
, “
Classical threshold law for the formation of van der Waals molecules
,”
J. Chem. Phys.
155
,
094306
(
2021
).
28.
S.
Haze
,
J. P.
D’Incao
,
D.
Dorer
,
M.
Deiß
,
E.
Tiemann
,
P. S.
Julienne
, and
J. H.
Denschlag
, “
Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms
,”
Phys. Rev. Lett.
128
,
133401
(
2022
).
29.
L. A.
Reynolds
,
E.
Schwartz
,
U.
Ebling
,
M.
Weyland
,
J.
Brand
, and
M. F.
Andersen
, “
Direct measurements of collisional dynamics in cold atom triads
,”
Phys. Rev. Lett.
124
,
073401
(
2020
).
30.
J.
Wolf
,
M.
Deiß
, and
J.
Hecker Denschlag
, “
Hyperfine magnetic substate resolved state-to-state chemistry
,”
Phys. Rev. Lett.
123
,
253401
(
2019
).
31.
J.
Wolf
,
M.
Deiß
,
A.
Krükow
,
E.
Tiemann
,
B. P.
Ruzic
,
Y.
Wang
,
J. P.
D’Incao
,
P. S.
Julienne
, and
J. H.
Denschlag
, “
State-to-state chemistry for three-body recombination in an ultracold rubidium gas
,”
Science
358
,
921
924
(
2017
).
32.
R.
Scheps
and
A.
Gallagher
, “
Teratomic recombination in alkali metal–noble gas vapors
,”
J. Chem. Phys.
65
,
859
871
(
1976
).
33.
Z.
Wu
,
T. G.
Walker
, and
W.
Happer
, “
Spin-rotation interaction of noble-gas alkali-metal atom pairs
,”
Phys. Rev. Lett.
54
,
1921
1924
(
1985
).
34.
W.
Happer
,
Y.-Y.
Jau
, and
T. G.
Walker
,
Optically Pumped Atoms
(
Wiley VCH
,
Weinheim
,
2010
).
35.
F.
Gong
,
Y.-Y.
Jau
, and
W.
Happer
, “
Nonlinear pressure shifts of alkali-metal atoms in inert gases
,”
Phys. Rev. Lett.
100
,
233002
(
2008
).
36.
B. H.
McGuyer
,
T.
Xia
,
Y.-Y.
Jau
, and
W.
Happer
, “
Hyperfine frequencies of 87Rb and 133Cs atoms in Xe gas
,”
Phys. Rev. A
84
,
030501(R)
(
2011
).
37.
B. H.
McGuyer
, “
Atomic physics with vapor-cell clocks
,” Ph.D. thesis,
Princeton University
,
2012
; see http://arks.princeton.edu/ark:/88435/dsp01ng451h53d.
38.
M.
Gozzelino
,
S.
Micalizio
,
C. E.
Calosso
,
A.
Godone
, and
F.
Levi
, “
Kr-based buffer gas for Rb vapor-cell clocks
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
68
,
1442
1447
(
2021
).
39.
T. G.
Walker
and
W.
Happer
, “
Spin-exchange optical pumping of noble-gas nuclei
,”
Rev. Mod. Phys.
69
,
629
642
(
1997
).
40.
T. R.
Gentile
,
P. J.
Nacher
,
B.
Saam
, and
T. G.
Walker
, “
Optically polarized 3He
,”
Rev. Mod. Phys.
89
,
045004
(
2017
).
41.
R.
Rodríguez-Cantano
,
T.
González-Lezana
,
R.
Prosmiti
,
G.
Delgado-Barrio
,
P.
Villarreal
, and
J.
Jellinek
, “
Reactive Scattering Calculations for 87Rb + 87RbHe → Rb2 (3Σu+, v) + He from ultralow to intermediate energies
,”
J. Chem. Phys.
142
,
164304
(
2015
).
42.
N.
Quiros
,
N.
Tariq
,
T. V.
Tscherbul
,
J.
Kłos
, and
J. D.
Weinstein
, “
Cold anisotropically interacting van der Waals molecule: TiHe
,”
Phys. Rev. Lett.
118
,
213401
(
2017
).
43.
R.
Chrapkiewicz
,
W.
Wasilewski
, and
C.
Radzewicz
, “
How to measure diffusional decoherence in multimode rubidium vapor memories?
,”
Opt. Commun.
317
,
1
6
(
2014
).
44.
M.
Parniak
and
W.
Wasilewski
, “
Direct observation of atomic diffusion in warm rubidium ensembles
,”
Appl. Phys. B
116
,
415
421
(
2014
).
45.
J. C.
Camparo
, “
Nonlinear collision shifts of the 0–0 hyperfine transition due to van der Waals molecule formation
,” Aerospace Report No. TOR-2019-00771,
2018
.
46.
J.
Camparo
, “
Nonlinear collision shifts of the 0–0 hyperfine transition due to van der Waals molecule formation
,”
J. Chem. Phys.
156
,
044303
(
2022
).
47.
N. J.
Stone
, “
Table of nuclear magnetic dipole and electric quadrupole moments
,”
At. Data Nucl. Data Tables
90
,
75
176
(
2005
).
48.
V.
Kellö
and
A. J.
Sadlej
, “
Nuclear quadrupole moments from molecular microwave data: The quadrupole moment of 85Rb and 87Rb nuclei and survey of molecular data for alkali-metal nuclei
,”
Phys. Rev. A
60
,
3575
3585
(
1999
).
49.
P.
Pyykkö
, “
Year-2008 nuclear quadrupole moments
,”
Mol. Phys.
106
,
1965
1974
(
2008
).
50.

In theory, a mixture of buffer gases could be adjusted to null the binary shift,37 leaving only a molecular shift.

51.
J. M.
Brown
and
A.
Carrington
,
Rotational Spectroscopy of Diatomic Molecules
(
Cambridge University Press
,
Cambridge
,
2003
), Note that the definitions of F and G in this reference are swapped compared to their use in this work.
52.
D. A.
Varshalovich
,
A. N.
Moskalev
, and
V. K.
Khersonskii
,
Quantum Theory of Angular Momentum
(
World Scientific
,
Singapore
,
1988
).
53.
B. H.
McGuyer
, “
Hyperfine-frequency shifts of alkali-metal atoms during long-range collisions
,”
Phys. Rev. A
87
,
054702
(
2013
).
54.
A. S.
Tarakanova
,
A. A.
Buchachenko
, and
D. S.
Bezrukov
, “
Trapping sites of Li atom in the rare gas crystals Ar, Kr, and Xe: Analysis of stability and manifestation in the EPR spectra
,”
Low Temp. Phys.
46
,
165
172
(
2020
).
55.
T. V.
Tscherbul
,
P.
Zhang
,
H. R.
Sadeghpour
, and
A.
Dalgarno
, “
Collision-induced spin exchange of alkali-metal atoms with 3He: An ab initio study
,”
Phys. Rev. A
79
,
062707
(
2009
).
56.
B. K.
Rao
,
D.
Ikenberry
, and
T. P.
Das
, “
Hyperfine pressure shift and van der Waals interaction. IV. Hydrogen-rare-gas systems
,”
Phys. Rev. A
2
,
1411
1421
(
1970
).
57.
S.
Ray
, “
Molecular theory of hyperfine pressure shifts in H caused by Ar and He buffers
,”
Phys. Rev. A
12
,
2031
2043
(
1975
).
58.
R. R.
Freeman
,
E. M.
Mattison
,
D. E.
Pritchard
, and
D.
Kleppner
, “
Alkali-metal hyperfine shift in the van der Waals molecule KAr
,”
Phys. Rev. Lett.
33
,
397
399
(
1974
).
59.
R. R.
Freeman
,
D. E.
Pritchard
, and
D.
Kleppner
, “
Argon-induced hyperfine frequency shift in potassium
,”
Phys. Rev. A
13
,
907
909
(
1976
).
60.
A.
Tsinovoy
,
O.
Katz
,
A.
Landau
, and
N.
Moiseyev
, “
Enhanced coupling of electron and nuclear spins by quantum tunneling resonances
,”
Phys. Rev. Lett.
128
,
013401
(
2022
).
61.
W. E.
Cooke
and
R. R.
Freeman
, “
Molecular-beam magnetic-resonance measurement of the spin-rotational interaction in RbKr
,”
Phys. Rev. A
16
,
2211
2215
(
1977
).
62.
R. R.
Freeman
,
E. M.
Mattison
,
D. E.
Pritchard
, and
D.
Kleppner
, “
The spin-rotation interaction in the van der Waals molecule KAr
,”
J. Chem. Phys.
64
,
1194
1203
(
1976
).
63.
R.
Brühl
and
D.
Zimmermann
, “
High-resolution laser spectroscopy of LiAr: Improved interaction potential and spin-rotation-coupling in the ground state X 2Σ+
,”
J. Chem. Phys.
115
,
7892
7896
(
2001
).
64.
V. V.
Meshkov
,
E. A.
Pazyuk
,
A.
Zaitsevskii
,
A. V.
Stolyarov
,
R.
Brühl
, and
D.
Zimmermann
, “
Direct deperturbation analysis of the A 2Π ∼ B 2Σ+ complex of 7,6LiAr isotopomers
,”
J. Chem. Phys.
123
,
204307
(
2005
).
65.
R. R.
Freeman
and
W. E.
Cooke
, “
Argon-induced g-factor shift in potassium
,”
Phys. Rev. A
13
,
1692
1697
(
1976
).
66.
B. H.
McGuyer
,
Y.-Y.
Jau
, and
W.
Happer
, “
Simple method of light-shift suppression in optical pumping systems
,”
Appl. Phys. Lett.
94
,
251110
(
2009
).
67.
F.
Levi
,
J.
Camparo
,
B.
Francois
,
C. E.
Calosso
,
S.
Micalizio
, and
A.
Godone
, “
Precision test of the ac Stark shift in a rubidium atomic vapor
,”
Phys. Rev. A
93
,
023433
(
2016
).
68.
B.
Lancor
,
E.
Babcock
,
R.
Wyllie
, and
T. G.
Walker
, “
Circular dichroism of RbHe and RbN2 molecules
,”
Phys. Rev. A
82
,
043435
(
2010
).
69.
W.
Moreno
,
M.
Pellaton
,
N.
Almat
,
M.
Gharavipour
,
C.
Affolderbach
, and
G.
Mileti
, “
Investigations on microwave power shift in compact vapor-cell atomic clock
,” in
2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC)
(
IEEE
,
2019
), pp.
1
3
.
70.
A.
Hudson
and
J.
Camparo
, “
Mesoscopic physics in vapor-phase atomic systems: Collision-shift gradients and the 0–0 hyperfine transition
,”
Phys. Rev. A
98
,
042510
(
2018
).
71.
J. C.
Camparo
,
R. P.
Frueholz
, and
C. H.
Volk
, “
Inhomogeneous light shift in alkali-metal atoms
,”
Phys. Rev. A
27
,
1914
1924
(
1983
).
72.
A.
Risley
,
S.
Jarvis
, and
J.
Vanier
, “
The dependence of frequency upon microwave power of wall-coated and buffer-gas-filled gas cell Rb87 frequency standards
,”
J. Appl. Phys.
51
,
4571
4576
(
1980
).
73.
B.
McGuyer
(
2020
), “
(Dataset) Measured hyperfine frequencies of 85Rb and 87Rb in inert buffer gases
,” Harvard Dataverse, v.1. https://doi.org/10.7910/DVN/ZA2Z7Q

Supplementary Material

You do not currently have access to this content.