Topological data analysis based on persistent homology has been applied to the molecular dynamics simulation for the fast ion-conducting phase (α-phase) of AgI to show its effectiveness on the ion migration mechanism analysis. Time-averaged persistence diagrams of α-AgI, which quantitatively record the shape and size of the ring structures in the given atomic configurations, clearly showed the emergence of the four-membered rings formed by two Ag and two I ions at high temperatures. They were identified as common structures during the Ag ion migration. The averaged potential energy change due to the deformation of the four-membered ring during Ag migration agrees well with the activation energy calculated from the conductivity Arrhenius plot. The concerted motion of two Ag ions via the four-membered ring was also successfully extracted from molecular dynamics simulations by our approach, providing new insight into the specific mechanism of the concerted motion.

1.
S.-i.
Orimo
,
Y.
Nakamori
,
J. R.
Eliseo
,
A.
Züttel
, and
C. M.
Jensen
, “
Complex hydrides for hydrogen storage
,”
Chem. Rev.
107
,
4111
4132
(
2007
).
2.
R.
Murugan
,
V.
Thangadurai
, and
W.
Weppner
, “
Fast lithium ion conduction in garnet-type Li7La3Zr2O12
,”
Angew. Chem., Int. Ed.
46
,
7778
7781
(
2007
).
3.
N.
Kamaya
,
K.
Homma
,
Y.
Yamakawa
,
M.
Hirayama
,
R.
Kanno
,
M.
Yonemura
,
T.
Kamiyama
,
Y.
Kato
,
S.
Hama
,
K.
Kawamoto
, and
A.
Mitsui
, “
A lithium superionic conductor
,”
Nat. Mater.
10
,
682
686
(
2011
).
4.
M.
Matsuo
and
S.-i.
Orimo
, “
Lithium fast-ionic conduction in complex hydrides: Review and prospects
,”
Adv. Energy Mater.
1
,
161
172
(
2011
).
5.
Y.
Seino
,
T.
Ota
,
K.
Takada
,
A.
Hayashi
, and
M.
Tatsumisago
, “
A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
,”
Energy Environ. Sci.
7
,
627
631
(
2014
).
6.
A.
Unemoto
,
M.
Matsuo
, and
S.-i.
Orimo
, “
Complex hydrides for electrochemical energy storage
,”
Adv. Funct. Mater.
24
,
2267
2279
(
2014
).
7.
R.
Mohtadi
and
S.-i.
Orimo
, “
The renaissance of hydrides as energy materials
,”
Nat. Rev. Mater.
2
,
16091
(
2016
).
8.
K.
Ohara
,
A.
Mitsui
,
M.
Mori
,
Y.
Onodera
,
S.
Shiotani
,
Y.
Koyama
,
Y.
Orikasa
,
M.
Murakami
,
K.
Shimoda
,
K.
Mori
,
T.
Fukunaga
,
H.
Arai
,
Y.
Uchimoto
, and
Z.
Ogumi
, “
Structural and electronic features of binary Li2S-P2S5 glasses
,”
Sci. Rep.
6
,
21302
(
2016
).
9.
S.
Kim
,
H.
Oguchi
,
N.
Toyama
,
T.
Sato
,
S.
Takagi
,
T.
Otomo
,
D.
Arunkumar
,
N.
Kuwata
,
J.
Kawamura
, and
S.-i.
Orimo
, “
A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries
,”
Nat. Commun.
10
,
1081
(
2019
).
10.
K.
Sau
,
T.
Ikeshoji
,
S.
Kim
,
S.
Takagi
,
K.
Akagi
, and
S.-i.
Orimo
, “
Reorientational motion and Li+-ion transport in Li2B12H12 system: Molecular dynamics study
,”
Phys. Rev. Mater.
3
,
075402
(
2019
).
11.
K.
Kisu
,
S.
Kim
,
T.
Shinohara
,
K.
Zhao
,
A.
Züttel
, and
S.-i.
Orimo
, “
Monocarborane cluster as a stable fluorine-free calcium battery electrolyte
,”
Sci. Rep.
11
,
7563
(
2021
).
12.
K.
Sau
and
T.
Ikeshoji
, “
Ring mechanism of fast Na+ ion transport in Na2LiFeTeO6: Insight from molecular dynamics simulation
,”
Phys. Rev. Mater.
6
,
045406
(
2022
).
13.

The migration of multiple ions triggered by that of one ion. Here, the term, concerted motion, is defined in a broad sense. In this article, if other ions move in conjunction with the migration of one ion, it is considered to be a concerted motion, regardless of the direction of transport, etc.

14.
X.
He
,
Y.
Zhu
, and
Y.
Mo
, “
Origin of fast ion diffusion in super-ionic conductors
,”
Nat. Commun.
8
,
15893
(
2017
).
15.
Z.
Zhang
,
Z.
Zou
,
K.
Kaup
,
R.
Xiao
,
S.
Shi
,
M.
Avdeev
,
Y. S.
Hu
,
D.
Wang
,
B.
He
,
H.
Li
,
X.
Huang
,
L. F.
Nazar
, and
L.
Chen
, “
Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes
,”
Adv. Energy Mater.
9
,
1902373
(
2019
).
16.
K.
Sau
,
T.
Ikeshoji
,
S.
Kim
,
S.
Takagi
, and
S.-i.
Orimo
, “
Comparative molecular dynamics study of the roles of anion-cation and cation-cation correlation in cation diffusion in Li2B12H12 and LiCB11H12
,”
Chem. Mater.
33
,
2357
2369
(
2021
).
17.
Z.
Zhang
and
L. F.
Nazar
, “
Exploiting the paddle-wheel mechanism for the design of fast ion conductors
,”
Nat. Rev. Mater.
7
,
389
405
(
2022
).
18.
B. C.
Wood
,
J. B.
Varley
,
K. E.
Kweon
,
P.
Shea
,
A. T.
Hall
,
A.
Grieder
,
M.
Ward
,
V. P.
Aguirre
,
D.
Rigling
,
E.
Lopez Ventura
,
C.
Stancill
, and
N.
Adelstein
, “
Paradigms of frustration in superionic solid electrolytes
,”
Philos. Trans. R. Soc., A
379
,
20190467
(
2021
).
19.
Y.
Hiraoka
,
T.
Nakamura
,
A.
Hirata
,
E. G.
Escolar
,
K.
Matsue
, and
Y.
Nishiura
, “
Hierarchical structures of amorphous solids characterized by persistent homology
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
7035
(
2016
).
20.
S.
Hong
and
D.
Kim
, “
Medium-range order in amorphous ices revealed by persistent homology
,”
J. Phys.: Condens. Matter
31
,
455403
(
2019
).
21.
J. R.
Stellhorn
,
B.
Paulus
,
S.
Hosokawa
,
W.-C.
Pilgrim
,
N.
Boudet
,
N.
Blanc
,
H.
Ikemoto
,
S.
Kohara
, and
Y.
Sutou
, “
Structure of amorphous Cu2GeTe3 and the implications for its phase-change properties
,”
Phys. Rev. B
101
,
214110
(
2020
).
22.
D.
Ormrod Morley
,
P. S.
Salmon
, and
M.
Wilson
, “
Persistent homology in two-dimensional atomic networks
,”
J. Chem. Phys.
154
,
124109
(
2021
).
23.
A.
Hirata
,
K.
Matsue
, and
M.
Chen
,
Structural Analysis of Metallic Glasses with Computational Homology
(
Springer
,
2016
).
24.
Y.
Onodera
,
Y.
Takimoto
,
H.
Hijiya
,
T.
Taniguchi
,
S.
Urata
,
S.
Inaba
,
S.
Fujita
,
I.
Obayashi
,
Y.
Hiraoka
, and
S.
Kohara
, “
Origin of the mixed alkali effect in silicate glass
.”
NPG Asia Mater.
11
,
75
(
2019
).
25.
S.
Hosokawa
,
J.-F.
Bérar
,
N.
Boudet
,
W.-C.
Pilgrim
,
L.
Pusztai
,
S.
Hiroi
,
K.
Maruyama
,
S.
Kohara
,
H.
Kato
,
H. E.
Fischer
, and
A.
Zeidler
, “
Partial structure investigation of the traditional bulk metallic glass Pd40Ni40P20
,”
Phys. Rev. B
100
,
054204
(
2019
).
26.
A.
Hirata
,
T.
Wada
,
I.
Obayashi
, and
Y.
Hiraoka
, “
Structural changes during glass formation extracted by computational homology with machine learning
,”
Commun. Mater.
1
,
98
(
2020
).
27.
S. S.
Sorensen
,
T.
Du
,
C. A.
Biscio
,
L.
Fajstrup
, and
M. M.
Smedskjaer
, “
Persistent homology: A tool to understand medium-range order glass structure
,”
J. Non-Cryst. Solids: X
16
,
100123
(
2022
).
28.
Y.
Lee
,
S. D.
Barthel
,
P.
Dłotko
,
S. M.
Moosavi
,
K.
Hess
, and
B.
Smit
, “
Quantifying similarity of pore-geometry in nanoporous materials
,”
Nat. Commun.
8
,
15396
(
2017
).
29.
K.
Sasaki
,
R.
Okajima
, and
T.
Yamashita
, “
Liquid structures characterized by a combination of the persistent homology analysis and molecular dynamics simulation
,”
AIP Conf. Proc.
2040
,
020015
(
2018
).
30.
E.
Minamitani
,
T.
Shiga
,
M.
Kashiwagi
, and
I.
Obayashi
, “
Topological descriptor of thermal conductivity in amorphous Si
,”
J. Chem. Phys.
156
,
244502
(
2022
).
31.
E.
Minamitani
,
T.
Shiga
,
M.
Kashiwagi
, and
I.
Obayashi
, “
Relationship between local coordinates and thermal conductivity in amorphous carbon
,”
J. Vacuum Sci. Technol. A
40
,
033408
(
2022
).
32.
Z. L.
Wang
,
T.
Ogawa
, and
Y.
Adachi
, “
Property predictions for dual-phase steels using persistent homology and machine learning
,”
Adv. Theory Simul.
3
,
1900227
(
2020
).
33.
Y.
Jiang
,
D.
Chen
,
X.
Chen
,
T.
Li
,
G.-W.
Wei
, and
F.
Pan
, “
Topological representations of crystalline compounds for the machine-learning prediction of materials properties
,”
npj Comput. Mater.
7
,
28
(
2021
).
34.
A.
Suzuki
,
M.
Miyazawa
,
J. M.
Minto
,
T.
Tsuji
,
I.
Obayashi
,
Y.
Hiraoka
, and
T.
Ito
, “
Flow estimation solely from image data through persistent homology analysis
,”
Sci. Rep.
11
,
17948
(
2021
).
35.
S.
Becker
,
E.
Devijver
,
R.
Molinier
, and
N.
Jakse
, “
Unsupervised topological learning approach of crystal nucleation
,”
Sci. Rep.
12
,
3195
(
2022
).
36.
V.
Nield
,
D.
Keen
,
W.
Hayes
, and
R.
McGreevy
, “
Structure and fast-ion conduction in α-AgI
,”
Solid State Ionics
66
,
247
258
(
1993
).
37.
S.
Hull
, “
Superionics: Crystal structures and conduction processes
,”
Rep. Prog. Phys.
67
,
1233
(
2004
).
38.
F.
Shimojo
and
M.
Aniya
, “
Diffusion mechanism of Ag ions in superionic conductor Ag2Se from ab initio molecular-dynamics simulations
,”
J. Phys. Soc. Jpn.
74
,
1224
(
2005
).
39.
F.
Shimojo
,
T.
Inoue
,
M.
Aniya
,
T.
Sugahara
, and
Y.
Miyata
, “
Ab initio molecular-dynamics study of static structure and bonding properties of molten AgI
,”
J. Phys. Soc. Jpn.
75
,
114602
(
2006
).
40.
V.
Bitrián
and
J.
Trullàs
, “
Molecular dynamics study of polarization effects on AgI
,”
J. Phys. Chem. B
112
,
1718
(
2008
).
41.
B. J.
Morgan
and
P. A.
Madden
, “
Relationships between atomic diffusion mechanisms and ensemble transport coefficients in crystalline polymorphs
,”
Phys. Rev. Lett.
112
,
145901
(
2014
).
42.
O.
Yamamoto
, “
Solid state ionics: A Japan perspective
,”
Sci. Technol. Adv. Mater.
18
,
504
(
2017
).
43.
T. M.
Brenner
,
C.
Gehrmann
,
R.
Korobko
,
T.
Livneh
,
D. A.
Egger
, and
O.
Yaffe
, “
Anharmonic host-lattice dynamics enable fast ion conduction in superionic AgI
,”
Phys. Rev. Mater.
4
,
115402
(
2020
).
44.
F.
Grasselli
, “
Investigating finite-size effects in molecular dynamics simulations of ion diffusion, heat transport, and thermal motion in superionic materials
,”
J. Chem. Phys.
156
,
134705
(
2022
).
45.
G.
Mills
,
H.
Jónsson
, and
G. K.
Schenter
, “
Reversible work transition state theory: Application to dissociative adsorption of hydrogen
,”
Surf. Sci.
324
,
305
337
(
1995
).
46.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
47.
I.
Obayashi
,
T.
Nakamura
, and
Y.
Hiraoka
, “
Persistent homology analysis for materials research and persistent homology software: HomCloud
,”
J. Phys. Soc. Jpn.
91
,
091013
(
2022
).
48.
F.
Shimojo
and
M.
Kobayashi
, “
Molecular dynamics studies of molten AgI. I. Structure and dynamical properties
,”
J. Phys. Soc. Jpn.
60
,
3725
(
1991
).
49.
M.
Parrinello
,
A.
Rahman
, and
P.
Vashishta
, “
Structural transitions in superionic conductors
,”
Phys. Rev. Lett.
50
,
1073
(
1983
).
50.
The following Nernst–Einstein equation and Green–Kubo formula were employed to calculate Ag-ion conductivity. The former is based on the self-diffusion coefficient DAg in the following equation:
where nAg is the number density of Ag ion and qAg is the formal charge of Ag ion (+1.0). DAg is obtained from the mean squared displacement (MSD) as follows:
Note that ri(t) in the equation represents the coordinate of the ith Ag at particular time t = t. To take into account the velocity correlation of ions, the conductivity is also obtained from Green–Kubo formula in the following equation:
where vi and qi are are the velocity and the formal charge of ith ion. V is the volume of the calculation cell. t and t′ are the MD time step and the MD time step for the reference velocity, respectively. The inside of the bracket represents the correlation function of the current for ions.
51.
W. G.
Hoover
, “
Constant-pressure equations of motion
,”
Phys. Rev. A
34
,
2499
2500
(
1986
).
52.
I.
Obayashi
, “
Volume-optimal cycle: Tightest representative cycle of a generator in persistent homology
,”
SIAM J. Appl. Algebra Geom.
2
,
508
534
(
2018
).
53.
A.
Marcolongo
and
N.
Marzari
, “
Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes
,”
Phys. Rev. Mater.
1
,
025402
(
2017
).
54.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
55.
M.
French
,
S.
Hamel
, and
R.
Redmer
, “
Dynamical screening and ionic conductivity in water from ab initio simulations
,”
Phys. Rev. Lett.
107
,
185901
(
2011
).
56.
G.
Federico
and
B.
Stefano
, “
Topological quantization and gauge invariance of charge transport in liquid insulators
,”
Nat. Phys.
15
,
967
972
(
2019
).
57.
P.
Pegolo
,
F.
Grasselli
, and
S.
Baroni
, “
Oxidation states, Thouless’ pumps, and nontrivial ionic transport in nonstoichiometric electrolytes
,”
Phys. Rev. X
10
,
041031
(
2020
).
58.

Here, we presume that each Ag ion migrates independently along the edge of the Voronoi polyhedron for I bcc lattice without interacting with each other.

59.

In principle, the arrangement of Ag ions is random, but the following two constraints are imposed: (1) the number of Ag ions in a unit cell is limited to two to maintain the stoichiometry within a unit cell, and (2) each Ag ion in the unit cell must not be placed at least on the same surface of Voronoi polyhedron.

60.
L.
Talirz
,
S.
Kumbhar
,
E.
Passaro
,
A. V.
Yakutovich
,
V.
Granata
,
F.
Gargiulo
,
M.
Borelli
,
M.
Uhrin
,
S. P.
Huber
,
S.
Zoupanos
,
C. S.
Adorf
,
C. W.
Andersen
,
O.
Schütt
,
C. A.
Pignedoli
,
D.
Passerone
,
J.
VandeVondele
,
T. C.
Schulthess
,
B.
Smit
,
G.
Pizzi
, and
N.
Marzari
, “
Materials Cloud, a platform for open computational science
,”
Sci. Data
7
,
299
(
2020
).

Supplementary Material

You do not currently have access to this content.