The vertex function (Γ) within the Green’s function formalism encapsulates information about all higher-order electron–electron interaction beyond those mediated by density fluctuations. Herein, we present an efficient approach that embeds vertex corrections in the one-shot GW correlation self-energy for isolated and periodic systems. The vertex-corrected self-energy is constructed through the proposed separation–propagation–recombination procedure: the electronic Hilbert space is separated into an active space and its orthogonal complement denoted as the “rest;” the active component is propagated by a space-specific effective Hamiltonian different from the rest. The vertex corrections are introduced by a rescaled time-dependent nonlocal exchange interaction. The direct Γ correction to the self-energy is further updated by adjusting the rescaling factor in a self-consistent post-processing cycle. Our embedding method is tested mainly on donor–acceptor charge-transfer systems. The embedded vertex effects consistently and significantly correct the quasiparticle energies of the gap-edge states. The fundamental gap is generally improved by 1–3 eV upon the one-shot GW approximation. Furthermore, we provide an outlook for applications of (embedded) vertex corrections in calculations of extended solids.

1.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
2.
S.
Goedecker
and
G. E.
Scuseria
,
Comput. Sci. Eng.
5
,
14
(
2003
).
3.
C.-K.
Skylaris
,
P. D.
Haynes
,
A. A.
Mostofi
, and
M. C.
Payne
,
J. Chem. Phys.
122
,
084119
(
2005
).
4.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
5.
Y.
Zhou
,
Y.
Saad
,
M. L.
Tiago
, and
J. R.
Chelikowsky
,
J. Comput. Phys.
219
,
172
(
2006
).
6.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
,
Chem. Phys.
356
,
98
(
2009
).
7.
Y.
Saad
,
J. R.
Chelikowsky
, and
S. M.
Shontz
,
SIAM Rev.
52
,
3
(
2010
).
8.
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
,
Phys. Rev. Lett.
111
,
106402
(
2013
).
9.
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
,
J. Chem. Phys.
141
,
041102
(
2014
).
10.
A.
Fetter
and
J.
Walecka
,
Quantum Theory of Many-Particle Systems
, Dover Books on Physics (
Dover Publications
,
2003
).
11.
R. M.
Martin
,
L.
Reining
, and
D. M.
Ceperley
,
Interacting Electrons: Theory and Computational Approaches
(
Cambridge University Press
,
Cambridge
,
2016
).
12.
L.
Hedin
,
Phys. Rev.
139
,
A796
(
1965
).
13.
F.
Aryasetiawan
and
O.
Gunnarsson
,
Rep. Prog. Phys.
61
,
237
(
1998
).
14.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
15.
C.
Friedrich
and
A.
Schindlmayr
, “
Many-body perturbation theory: The GW approximation
,” in
Computational Nanoscience: Do it Yourself!
, NIC Series, edited by
J.
Grotendorst
,
S.
Blügel
, and
D.
Marx
(
John von Neumann Institute for Computing
,
2006
), Vol. 31, pp.
335
355
.
16.
D.
Golze
,
M.
Dvorak
, and
P.
Rinke
,
Front. Chem.
7
,
377
(
2019
).
17.
G.
Strinati
,
H. J.
Mattausch
, and
W.
Hanke
,
Phys. Rev. Lett.
45
,
290
(
1980
).
18.
G.
Strinati
,
H. J.
Mattausch
, and
W.
Hanke
,
Phys. Rev. B
25
,
2867
(
1982
).
19.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. Lett.
55
,
1418
(
1985
).
20.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. B
34
,
5390
(
1986
).
21.
R. W.
Godby
,
M.
Schlüter
, and
L. J.
Sham
,
Phys. Rev. B
37
,
10159
(
1988
).
22.
W. G.
Aulbur
,
L.
Jönsson
, and
J. W.
Wilkins
, “
Quasiparticle calculations in solids
,”
Solid State Phys.
54
,
1
218
(
2000
).
23.
C.
Rostgaard
,
K. W.
Jacobsen
, and
K. S.
Thygesen
,
Phys. Rev. B
81
,
085103
(
2010
).
24.
F.
Hüser
,
T.
Olsen
, and
K. S.
Thygesen
,
Phys. Rev. B
87
,
235132
(
2013
).
25.
M. J.
van Setten
,
F.
Weigend
, and
F.
Evers
,
J. Chem. Theory Comput.
9
,
232
(
2013
).
26.
S.
Körbel
,
P.
Boulanger
,
I.
Duchemin
,
X.
Blase
,
M. A. L.
Marques
, and
S.
Botti
,
J. Chem. Theory Comput.
10
,
3934
(
2014
).
27.
W.
Chen
and
A.
Pasquarello
,
Phys. Rev. B
90
,
165133
(
2014
).
28.
M.
Govoni
and
G.
Galli
,
J. Chem. Theory Comput.
11
,
2680
(
2015
).
29.
L.
Gallandi
and
T.
Körzdörfer
,
J. Chem. Theory Comput.
11
,
5391
(
2015
).
30.
F.
Caruso
,
M.
Dauth
,
M. J.
van Setten
, and
P.
Rinke
,
J. Chem. Theory Comput.
12
,
5076
(
2016
).
31.
Y.
Kang
,
S. H.
Jeon
,
Y.
Cho
, and
S.
Han
,
Phys. Rev. B
93
,
035131
(
2016
).
32.
T.
Rangel
,
S. M.
Hamed
,
F.
Bruneval
, and
J. B.
Neaton
,
J. Chem. Theory Comput.
12
,
2834
(
2016
).
33.
L.
Gallandi
,
N.
Marom
,
P.
Rinke
, and
T.
Körzdörfer
,
J. Chem. Theory Comput.
12
,
605
(
2016
).
34.
L.
Hung
,
F.
Bruneval
,
K.
Baishya
, and
S.
Öğüt
,
J. Chem. Theory Comput.
13
,
2135
(
2017
).
35.
J.
Bois
and
T.
Körzdörfer
,
J. Chem. Theory Comput.
13
,
4962
(
2017
).
36.
M.
Govoni
and
G.
Galli
,
J. Chem. Theory Comput.
14
,
1895
(
2018
).
37.
Z.
Ergönenc
,
B.
Kim
,
P.
Liu
,
G.
Kresse
, and
C.
Franchini
,
Phys. Rev. Mater.
2
,
024601
(
2018
).
38.
D.
Neuhauser
,
Y.
Gao
,
C.
Arntsen
,
C.
Karshenas
,
E.
Rabani
, and
R.
Baer
,
Phys. Rev. Lett.
113
,
076402
(
2014
).
39.
V.
Vlček
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
,
J. Chem. Theory Comput.
13
,
4997
(
2017
).
40.
V.
Vlček
,
W.
Li
,
R.
Baer
,
E.
Rabani
, and
D.
Neuhauser
,
Phys. Rev. B
98
,
075107
(
2018
).
41.
V.
Vlček
,
E.
Rabani
, and
D.
Neuhauser
,
Phys. Rev. Mater.
2
,
030801(R)
(
2018
).
42.
J.
Brooks
,
G.
Weng
,
S.
Taylor
, and
V.
Vlcek
,
J. Phys.: Condens. Matter
32
,
234001
(
2020
).
43.
G.
Weng
and
V.
Vlček
,
J. Phys. Chem. Lett.
11
,
7177
(
2020
).
44.
M.
Romanova
and
V.
Vlček
,
J. Chem. Phys.
153
,
134103
(
2020
).
45.
G.
Weng
and
V.
Vlček
,
J. Chem. Phys.
155
,
054104
(
2021
).
46.
M.
Romanova
and
V.
Vlček
,
npj Comput. Mater.
8
,
11
(
2022
).
47.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
48.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
49.
L. S.
Cederbaum
,
J.
Schirmer
,
W.
Domcke
, and
W.
von Niessen
,
J. Phys. B: At. Mol. Phys.
10
,
L549
(
1977
).
50.
L. S.
Cederbaum
,
W.
Domcke
,
J.
Schirmer
, and
W.
von Niessen
,
Phys. Scr.
21
,
481
(
1980
).
51.
W.
Nelson
,
P.
Bokes
,
P.
Rinke
, and
R. W.
Godby
,
Phys. Rev. A
75
,
032505
(
2007
).
52.
F.
Aryasetiawan
,
R.
Sakuma
, and
K.
Karlsson
,
Phys. Rev. B
85
,
035106
(
2012
).
53.
R.
Del Sole
,
L.
Reining
, and
R. W.
Godby
,
Phys. Rev. B
49
,
8024
(
1994
).
54.
M. L.
Tiago
and
J. R.
Chelikowsky
,
Phys. Rev. B
73
,
205334
(
2006
).
55.
A. J.
Morris
,
M.
Stankovski
,
K. T.
Delaney
,
P.
Rinke
,
P.
García-González
, and
R. W.
Godby
,
Phys. Rev. B
76
,
155106
(
2007
).
56.
M.
Shishkin
,
M.
Marsman
, and
G.
Kresse
,
Phys. Rev. Lett.
99
,
246403
(
2007
).
57.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
,
J. Chem. Phys.
131
,
154115
(
2009
).
58.
Y.-W.
Chang
and
B.-Y.
Jin
,
J. Chem. Phys.
136
,
024110
(
2012
).
59.
A.
Grüneis
,
G.
Kresse
,
Y.
Hinuma
, and
F.
Oba
,
Phys. Rev. Lett.
112
,
096401
(
2014
).
60.
X.
Ren
,
N.
Marom
,
F.
Caruso
,
M.
Scheffler
, and
P.
Rinke
,
Phys. Rev. B
92
,
081104
(
2015
).
61.
W.
Chen
and
A.
Pasquarello
,
Phys. Rev. B
92
,
041115
(
2015
).
62.
L.
Hung
,
F. H.
da Jornada
,
J.
Souto-Casares
,
J. R.
Chelikowsky
,
S. G.
Louie
, and
S.
Öğüt
,
Phys. Rev. B
94
,
085125
(
2016
).
63.
R.
Kuwahara
,
Y.
Noguchi
, and
K.
Ohno
,
Phys. Rev. B
94
,
121116
(
2016
).
64.
J. W.
Knight
,
X.
Wang
,
L.
Gallandi
,
O.
Dolgounitcheva
,
X.
Ren
,
J. V.
Ortiz
,
P.
Rinke
,
T.
Körzdörfer
, and
N.
Marom
,
J. Chem. Theory Comput.
12
,
615
(
2016
).
65.
P. S.
Schmidt
,
C. E.
Patrick
, and
K. S.
Thygesen
,
Phys. Rev. B
96
,
205206
(
2017
).
66.
E.
Maggio
and
G.
Kresse
,
J. Chem. Theory Comput.
13
,
4765
(
2017
).
67.
M.
Hellgren
,
N.
Colonna
, and
S.
de Gironcoli
,
Phys. Rev. B
98
,
045117
(
2018
).
68.
V.
Vlček
,
J. Chem. Theory Comput.
15
,
6254
(
2019
).
69.
A. M.
Lewis
and
T. C.
Berkelbach
,
J. Chem. Theory Comput.
15
,
2925
(
2019
).
70.
H.
Ma
,
M.
Govoni
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Theory Comput.
15
,
154
(
2019
).
71.
Y.
Pavlyukh
,
G.
Stefanucci
, and
R.
van Leeuwen
,
Phys. Rev. B
102
,
045121
(
2020
).
72.
C.
Mejuto-Zaera
,
G.
Weng
,
M.
Romanova
,
S. J.
Cotton
,
K. B.
Whaley
,
N. M.
Tubman
, and
V.
Vlček
,
J. Chem. Phys.
154
,
121101
(
2021
).
73.
Y.
Wang
,
P.
Rinke
, and
X.
Ren
,
J. Chem. Theory Comput.
17
,
5140
(
2021
).
74.
Y.
Wang
and
X.
Ren
,
J. Chem. Phys.
157
,
214115
(
2022
).
75.
F.
Bruneval
,
F.
Sottile
,
V.
Olevano
,
R.
Del Sole
, and
L.
Reining
,
Phys. Rev. Lett.
94
,
186402
(
2005
).
76.
P.
Romaniello
,
S.
Guyot
, and
L.
Reining
,
J. Chem. Phys.
131
,
154111
(
2009
).
77.
D. L.
Freeman
,
Phys. Rev. B
15
,
5512
(
1977
).
78.
H. J.
de Groot
,
R. T. M.
Ummels
,
P. A.
Bobbert
, and
W.
van Haeringen
,
Phys. Rev. B
54
,
2374
(
1996
).
79.
P.
Romaniello
,
F.
Bechstedt
, and
L.
Reining
,
Phys. Rev. B
85
,
155131
(
2012
).
80.
T.
Ayral
,
P.
Werner
, and
S.
Biermann
,
Phys. Rev. Lett.
109
,
226401
(
2012
).
81.
M.
Hellgren
,
Eur. Phys. J. B
91
,
155
(
2018
).
82.
C.
Mejuto-Zaera
and
V.
Vlček
,
Phys. Rev. B
106
,
165129
(
2022
).
83.
N. M.
Tubman
,
J.
Lee
,
T. Y.
Takeshita
,
M.
Head-Gordon
, and
K. B.
Whaley
,
J. Chem. Phys.
145
,
044112
(
2016
).
84.
N. M.
Tubman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
An efficient deterministic perturbation theory for selected configuration interaction methods
,” arXiv:1808.02049 (
2018
).
85.
C.
Mejuto-Zaera
,
N. M.
Tubman
, and
K. B.
Whaley
,
Phys. Rev. B
100
,
125165
(
2019
).
86.
N. M.
Tubman
,
C. D.
Freeman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
,
J. Chem. Theory Comput.
16
,
2139
(
2020
).
87.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Chem. Phys.
131
,
244119
(
2009
).
88.
T.
Stein
,
H.
Eisenberg
,
L.
Kronik
, and
R.
Baer
,
Phys. Rev. Lett.
105
,
266802
(
2010
).
89.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
,
J. Chem. Theory Comput.
8
,
1515
(
2012
).
90.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
N.
Govind
,
J.
Autschbach
,
J. B.
Neaton
,
R.
Baer
, and
L.
Kronik
,
Phys. Rev. Lett.
109
,
226405
(
2012
).
91.
S.
Refaely-Abramson
,
M.
Jain
,
S.
Sharifzadeh
,
J. B.
Neaton
, and
L.
Kronik
,
Phys. Rev. B
92
,
081204
(
2015
).
92.
A. K.
Manna
,
S.
Refaely-Abramson
,
A. M.
Reilly
,
A.
Tkatchenko
,
J. B.
Neaton
, and
L.
Kronik
,
J. Chem. Theory Comput.
14
,
2919
(
2018
).
93.
L.
Kronik
and
S.
Kümmel
,
Adv. Mater.
30
,
1706560
(
2018
).
94.
S.
Bhandari
,
M. S.
Cheung
,
E.
Geva
,
L.
Kronik
, and
B. D.
Dunietz
,
J. Chem. Theory Comput.
14
,
6287
(
2018
).
95.
D.
Wing
,
J. B.
Haber
,
R.
Noff
,
B.
Barker
,
D. A.
Egger
,
A.
Ramasubramaniam
,
S. G.
Louie
,
J. B.
Neaton
, and
L.
Kronik
,
Phys. Rev. Mater.
3
,
064603
(
2019
).
96.
G.
Prokopiou
,
M.
Hartstein
,
N.
Govind
, and
L.
Kronik
,
J. Chem. Theory Comput.
18
,
2331
(
2022
).
97.
N. P.
Brawand
,
M.
Vörös
,
M.
Govoni
, and
G.
Galli
,
Phys. Rev. X
6
,
041002
(
2016
).
98.
T.
Rangel
,
S. M.
Hamed
,
F.
Bruneval
, and
J. B.
Neaton
,
J. Chem. Phys.
146
,
194108
(
2017
).
99.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Am. Chem. Soc.
131
,
2818
(
2009
).
100.
V.
Vlček
,
H. R.
Eisenberg
,
G.
Steinle-Neumann
,
L.
Kronik
, and
R.
Baer
,
J. Chem. Phys.
142
,
034107
(
2015
).
101.
D.
Wing
,
G.
Ohad
,
J. B.
Haber
,
M. R.
Filip
,
S. E.
Gant
,
J. B.
Neaton
, and
L.
Kronik
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2104556118
(
2021
).
102.
S. E.
Gant
,
J. B.
Haber
,
M. R.
Filip
,
F.
Sagredo
,
D.
Wing
,
G.
Ohad
,
L.
Kronik
, and
J. B.
Neaton
,
Phys. Rev. Mater.
6
,
053802
(
2022
).
103.
G.
Ohad
,
D.
Wing
,
S. E.
Gant
,
A. V.
Cohen
,
J. B.
Haber
,
F.
Sagredo
,
M. R.
Filip
,
J. B.
Neaton
, and
L.
Kronik
,
Phys. Rev. Mater.
6
,
104606
(
2022
).
105.
J. F.
Janak
,
Phys. Rev. B
18
,
7165
(
1978
).
106.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
107.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
108.
E. Ö.
Jónsson
,
S.
Lehtola
,
M.
Puska
, and
H.
Jónsson
,
J. Chem. Theory Comput.
13
,
460
(
2017
).
109.
G.
Weng
,
M.
Romanova
,
A.
Apelian
,
H.
Song
, and
V.
Vlček
,
J. Chem. Theory Comput.
18
,
4960
(
2022
).
110.
E.
Rabani
,
R.
Baer
, and
D.
Neuhauser
,
Phys. Rev. B
91
,
235302
(
2015
).
111.
C.-R.
Zhang
,
J. S.
Sears
,
B.
Yang
,
S. G.
Aziz
,
V.
Coropceanu
, and
J.-L.
Brédas
,
J. Chem. Theory Comput.
10
,
2379
(
2014
).
112.
Y.
Mei
,
Z.
Chen
, and
W.
Yang
,
J. Phys. Chem. Lett.
11
,
10269
(
2020
).
113.
V. G.
Zakrzewski
,
O.
Dolgounitcheva
, and
J. V.
Ortiz
,
J. Chem. Phys.
105
,
5872
(
1996
).
114.
K. N.
Houk
and
L. L.
Munchausen
,
J. Am. Chem. Soc.
98
,
937
(
1976
).
115.
L.
Lyons
and
L.
Palmer
,
Aust. J. Chem.
29
,
1919
(
1976
).
116.
S.
Chowdhury
and
P.
Kebarle
,
J. Am. Chem. Soc.
108
,
5453
(
1986
).
117.
D.
Khuseynov
,
M. T.
Fontana
, and
A.
Sanov
,
Chem. Phys. Lett.
550
,
15
(
2012
).
118.
I.
Ikemoto
,
K.
Samizo
,
T.
Fujikawa
,
K.
Ishii
,
T.
Ohta
, and
H.
Kuroda
,
Chem. Lett.
3
,
785
(
1974
).
119.
C. E.
Klots
,
R. N.
Compton
, and
V. F.
Raaen
,
J. Chem. Phys.
60
,
1177
(
1974
).
120.
M.
Hayashi
,
T.-S.
Yang
,
J.
Yu
,
A.
Mebel
, and
S. H.
Lin
,
J. Phys. Chem. A
101
,
4156
(
1997
).
121.
S.
Yoo
,
B.
Domercq
, and
B.
Kippelen
,
Appl. Phys. Lett.
85
,
5427
(
2004
).
122.
C.-W.
Chu
,
Y.
Shao
,
V.
Shrotriya
, and
Y.
Yang
,
Appl. Phys. Lett.
86
,
243506
(
2005
).
123.
J.
Yang
and
T.-Q.
Nguyen
,
Org. Electron.
8
,
566
(
2007
).
124.
Z.
Zhang
and
Y.
Lin
,
ACS Omega
5
,
24994
(
2020
).
125.
C.-K.
Mai
,
H.
Zhou
,
Y.
Zhang
,
Z. B.
Henson
,
T.-Q.
Nguyen
,
A. J.
Heeger
, and
G. C.
Bazan
,
Angew. Chem., Int. Ed.
52
,
12874
(
2013
).
126.
C.-K.
Mai
,
B.
Russ
,
S. L.
Fronk
,
N.
Hu
,
M. B.
Chan-Park
,
J. J.
Urban
,
R. A.
Segalman
,
M. L.
Chabinyc
, and
G. C.
Bazan
,
Energy Environ. Sci.
8
,
2341
(
2015
).
127.
Q.
Cui
and
G. C.
Bazan
,
Acc. Chem. Res.
51
,
202
(
2018
).
128.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
129.
B.
Baumeier
,
D.
Andrienko
, and
M.
Rohlfing
,
J. Chem. Theory Comput.
8
,
2790
(
2012
).
130.
F.
Giustino
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. Lett.
105
,
265501
(
2010
).
131.
G.
Antonius
,
S.
Poncé
,
P.
Boulanger
,
M.
Côté
, and
X.
Gonze
,
Phys. Rev. Lett.
112
,
215501
(
2014
).
132.
G.
Antonius
,
S.
Poncé
,
E.
Lantagne-Hurtubise
,
G.
Auclair
,
X.
Gonze
, and
M.
Côté
,
Phys. Rev. B
92
,
085137
(
2015
).
133.
F.
Karsai
,
M.
Engel
,
E.
Flage-Larsen
, and
G.
Kresse
,
New J. Phys.
20
,
123008
(
2018
).
134.
D. B.
Dougherty
,
W.
Jin
,
W. G.
Cullen
,
G.
Dutton
,
J. E.
Reutt-Robey
, and
S. W.
Robey
,
Phys. Rev. B
77
,
073414
(
2008
).

Supplementary Material

You do not currently have access to this content.