Real time modeling of fluorescence with vibronic resolution entails the representation of the light–matter interaction coupled to a quantum-mechanical description of the phonons and is therefore a challenging problem. In this work, taking advantage of the difference in timescales characterizing internal conversion and radiative relaxation—which allows us to decouple these two phenomena by sequentially modeling one after the other—we simulate the electron dynamics of fluorescence through a master equation derived from the Redfield formalism. Moreover, we explore the use of a recent semiclassical dissipative equation of motion [C. M. Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)], termed coherent electron electric-field dynamics (CEED), to describe the radiative stage. By comparing the results with those from the full quantum-electrodynamics treatment, we find that the semiclassical model does not reproduce the right amplitudes in the emission spectra when the radiative process involves the de-excitation to a manifold of closely lying states. We argue that this flaw is inherent to any mean-field approach and is the case with CEED. This effect is critical for the study of light–matter interaction, and this work is, to our knowledge, the first one to report this problem. We note that CEED reproduces the correct frequencies in agreement with quantum electrodynamics. This is a major asset of the semiclassical model, since the emission peak positions will be predicted correctly without any prior assumption about the nature of the molecular Hamiltonian. This is not so for the quantum electrodynamics approach, where access to the spectral information relies on knowledge of the Hamiltonian eigenvalues.

1.
P.
Atkins
,
P. W.
Atkins
, and
J.
de Paula
,
Atkins’ Physical Chemistry
(
Oxford University Press
,
2014
).
2.
B. F. E.
Curchod
and
T. J.
Martínez
,
Chem. Rev.
118
,
3305
3336
(
2018
).
3.
F.
Agostini
and
B. F.
Curchod
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1417
(
2019
).
4.
F.
Ramírez
,
G.
Díaz Mirón
,
M. C.
González Lebrero
, and
D. A.
Scherlis
,
Theor. Chem. Acc.
137
,
124
(
2018
).
5.
G.
Díaz Mirón
and
M. C.
González Lebrero
,
J. Phys. Chem. A
124
,
9503
9512
(
2020
).
6.
Y.
Tanimura
,
J. Chem. Phys.
153
,
020901
(
2020
).
7.
M.
Sánchez-Barquilla
and
J.
Feist
,
Nanomaterials
11
,
2104
(
2021
).
8.
F.
Di Maiolo
and
A.
Painelli
,
J. Chem. Theory Comput.
14
,
5339
5349
(
2018
).
9.
C.
Chuang
and
P.
Brumer
,
J. Phys. Chem. Lett.
12
,
3618
3624
(
2021
).
10.
C.
Chuang
and
P.
Brumer
,
J. Phys. Chem. Lett.
13
,
4963
4970
(
2022
).
11.
D.
Giavazzi
,
F.
Di Maiolo
, and
A.
Painelli
,
Phys. Chem. Chem. Phys.
24
,
5555
5563
(
2022
).
12.
D.
Jadoun
and
M.
Kowalewski
,
J. Phys. Chem. Lett.
12
,
8103
8108
(
2021
).
13.
M.
Ruggenthaler
,
J.
Flick
,
C.
Pellegrini
,
H.
Appel
,
I. V.
Tokatly
, and
A.
Rubio
,
Phys. Rev. A
90
,
012508
(
2014
).
14.
J.
Flick
,
C.
Schäfer
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
,
ACS Photonics
5
,
992
1005
(
2018
).
15.
T. S.
Haugland
,
E.
Ronca
,
E. F.
Kjø nstad
,
A.
Rubio
, and
H.
Koch
,
Phys. Rev. X
10
,
041043
(
2020
).
16.
T. E.
Li
,
H.-T.
Chen
, and
J. E.
Subotnik
,
J. Chem. Theory Comput.
15
,
1957
1973
(
2019
).
17.
H.-T.
Chen
,
T. E.
Li
,
M.
Sukharev
,
A.
Nitzan
, and
J. E.
Subotnik
,
J. Chem. Phys.
150
,
044102
(
2019
).
18.
C. M.
Bustamante
,
E. D.
Gadea
,
A.
Horsfield
,
T. N.
Todorov
,
M. C. G.
Lebrero
, and
D. A.
Scherlis
,
Phys. Rev. Lett.
126
,
087401
(
2021
).
19.
E. D.
Gadea
,
C. M.
Bustamante
,
T. N.
Todorov
, and
D. A.
Scherlis
,
Phys. Rev. A
105
,
042201
(
2022
).
20.
R.
Jestädt
,
M.
Ruggenthaler
,
M. J. T.
Oliveira
,
A.
Rubio
, and
H.
Appel
,
Adv. Phys.
68
,
225
333
(
2019
).
21.
A. G.
Redfield
,
IBM J. Res. Dev.
1
,
19
31
(
1957
).
22.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
2000
).
23.
C. M.
Bustamante
,
T. N.
Todorov
,
C. G.
Sánchez
,
A.
Horsfield
, and
D. A.
Scherlis
,
J. Chem. Phys.
153
,
234108
(
2020
).
24.
D. P.
Craig
and
T.
Thirunamachandran
,
Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions
(
Courier Corporation
,
1998
).
You do not currently have access to this content.